[1]吕铁钢,张 亚,李世中.结合改进粒子群算法的RANSAC精确匹配方法[J].机械与电子,2017,(07):18-22.
 LYU Tiegang,ZHANG Ya,LI Shizhong.On RANSAC Accurate Matching Method Based on Improved Particle Swarm Optimization Algorithm[J].Machinery & Electronics,2017,(07):18-22.
点击复制

结合改进粒子群算法的RANSAC精确匹配方法
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2017年07期
页码:
18-22
栏目:
设计与研究
出版日期:
2017-07-25

文章信息/Info

Title:
On RANSAC Accurate Matching Method Based on Improved Particle Swarm Optimization Algorithm
文章编号:
1001-2257(2017)07-0018-05
作者:
吕铁钢张 亚李世中
(中北大学机电工程学院,山西 太原 030051)
Author(s):
LYU Tiegang ZHANG Ya LI Shizhong
(College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)
关键词:
粒子群算法 RANSAC 单位分解 精确匹配
Keywords:
particle swarm optimization RANSAC unit decomposition accurate match
分类号:
TP391.4
文献标志码:
A
摘要:
针对传统的随机抽样一致性算法在精确匹配中计算量大、效率低等问题,提出了一种结合改进粒子群算法的RANSAC精确匹配算法。首先,利用微分流形中单位分解的知识将图像分成几个部分。其次,利用改进粒子群算法选择最佳叶节点进行模型参数估算。最后,保留N个最佳叶节点,返回最优模型,统计几个局部的精确匹配点。通过仿真实验与传统的RANSAC和GASAC进行比较发现,结合改进粒子群算法的RANSAC精确匹配方法,在匹配准确率和结果不稳定等方面有很大的提升,减少了错误匹配点数。
Abstract:
A RANSAC accurate matching method based on improved particle swarm optimization algorithm is presented in this paper to solve the problems of large calculation amount and low efficiency of accurate match in traditional random sampling consistency algorithm. Firstly, divide images into several parts by using the unit decomposition method in the differential manifold. Secondly, estimate and calculate the model parameters by using the improved particle swarm optimization algorithm to select the best leaf node. Finally, return to the optimal model with the N best leaf nodes kept, and calculate the accurate matching points in the different parts. By comparing the simulation experiment and the traditional RANSAC and GASAC, it finds out that the RANSAC accurate match method based on the improved particle swarm optimization algorithm has greatly improved the matching accuracy and the results stability, and reduced the number of false matching points.

参考文献/References:

瘙塂an D, Meier U, Masci J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32: 333-338.
[17] 雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报,2015, 51(21):49-56.
[18] 石鑫,朱永利.深度学习神经网络在电力变压器故障诊断中的应用[J]. 电力建设,2015,36(12):116-122.
[19] 王勇,赵俭辉,章登义,等.基于稀疏自编码深度神经网络的林火图像分类[J]. 计算机工程与应用,2014,50(24):173-177.
[20] Mairal J, Bach F, Ponce J, et al. Online learning for matrix factorization and sparse coding[J]. Journal of Machine Learning Research, 2010, 11: 19-60.

相似文献/References:

[1]李 力,陆金桂.基于PSO-BP神经网络的飞灰含碳量测量方法[J].机械与电子,2019,(04):68.
 .Prediction Method of Carbon Content in Fiy Ash Based on PSO-BP Neural Network[J].Machinery & Electronics,2019,(07):68.
[2]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
 ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(07):3.
[3]胡斐,李维嘉,汪潇.基于视觉引导的Delta型并联机器人运动优化[J].机械与电子,2018,(06):71.
 HU Fei,LI Weijia,WANG Xiao.Motion Optimization of Delta Parallel Robot Based on Visual Guidance[J].Machinery & Electronics,2018,(07):71.
[4]刘雨航,金 一,竺长安.基于SIFT特征提取和最佳缝合线的图像拼接技术[J].机械与电子,2017,(06):18.
 LIU Yuhang,JIN Yi,ZHU Changan.Image Mosaic Technology Based on SIFT Feature Extraction and Optimal Stitching Line[J].Machinery & Electronics,2017,(07):18.
[5]赵坤灿.基于粒子群算法的新能源集热系统物联网控制模型研究[J].机械与电子,2016,(12):54.
 ZHAO Kuncan.Research on the Model of IoT Control Based on PSO for New Energy Collector System[J].Machinery & Electronics,2016,(07):54.
[6]陈 强1,崔熙贵1,陈 峻2,等.基于粒子群算法的零部件多级装配定位策略优化[J].机械与电子,2020,(05):22.
 ,,et al.Locating Strategy Optimization of Multi-Stage Parts AssemblyBased on Particle Swarm Optimization[J].Machinery & Electronics,2020,(07):22.
[7]刘志勇 1,王小红 2.一种自适应粒子群算法的小波神经网络优化[J].机械与电子,2021,(08):8.
 LIU Zhiyong,WANG Xiaohong.A Wavelet Neural Network Optimization Method Based on Variable-Weight Particle Swarm Optimization[J].Machinery & Electronics,2021,(07):8.
[8]史绍恩.云计算中分布式软件系统兼容性自动检测方法[J].机械与电子,2021,(12):39.
 SHI Shao en.Automatic Compatibility Detection Method of Distributed Software System in Cloud Computing[J].Machinery & Electronics,2021,(07):39.
[9]陈 杰,韩海豹.基于改进粒子群算法的农业机械产品装配分组优化配置[J].机械与电子,2022,(01):30.
 CHEN Jie,HAN Haibao.Optimal Configuration of Agricultural Machinery Product Assembly Grouping Based on Improved Particle Swarm Algorithm[J].Machinery & Electronics,2022,(07):30.
[10]曲鹏举.改进粒子群算法在柔性作业加工时间问题研究[J].机械与电子,2023,41(01):3.
 QU Pengju.Research on Processing Time Problem of Improved Particle Swarm Optimization in Flexible Job[J].Machinery & Electronics,2023,41(07):3.

备注/Memo

备注/Memo:
收稿日期:2017-03-08
作者简介:吕铁钢(1989-),男,内蒙古赤峰人,硕士研究生,研究方向机电系统控制技术; 张 亚(1965-),男,河南济源人,教授,研究方向为机电系统设计与分析技术,机电系统控制技术,目标、环境探测与识别技术; 李世中(1969-),男,河北栾城人,教授,研究方向目标探测识别、系统仿真。
更新日期/Last Update: 2017-07-25