[1]徐先峰,郑少杰,赵 依,等.基于数据分解与重构的光伏发电功率超短期预测[J].机械与电子,2022,(04):20-25.
 XU Xianfeng,ZHENG Shaojie,ZHAO Yi,et al.Ultra-short-term Prediction of Photovoltaic Power Generation Based on Data Decomposition and Deconstruction[J].Machinery & Electronics,2022,(04):20-25.
点击复制

基于数据分解与重构的光伏发电功率超短期预测()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2022年04期
页码:
20-25
栏目:
设计与研究
出版日期:
2022-04-27

文章信息/Info

Title:
Ultra-short-term Prediction of Photovoltaic Power Generation Based on Data Decomposition and Deconstruction
文章编号:
1001-2257 ( 2022 ) 04-0020-06
作者:
徐先峰郑少杰赵 依王世鑫蔡路路
长安大学电子与控制工程学院,陕西 西安 710064
Author(s):
XU Xianfeng ZHENG Shaojie ZHAO Yi WANG Shixin CAI Lulu
( School of Electronics and Control Engineering , Chang ’ an University , Xi ’ an 710064 , China )
关键词:
信号处理深度学习深度信念网络序列到序列算法组合模型
Keywords:
signal processing deep learning deep belief network sequence to sequence algorithm combined model
分类号:
TM615
文献标志码:
A
摘要:
为进一步提高光伏发电超短期预测的精度,以数据分解重构和深度学习技术为依托,提出一种基于 CEEMDAN-DBN-Seq2Seq 的光伏发电功率超短期预测方法。首先利用具有自适应噪声的完整经验模态分解算法( CEEMDAN )将原始发电数据分解成在时域内特征更加明显的模态函数序列,以提取发电序列在时间尺度上的特征;随后引入影响光伏出力的主要气象因素,利用深度信念网络( DBN )对重构后的高、低频分量和序列对序列( Seq2Seq )方法对残差分量进行预测。实验表明,所提模型在光伏发电预测研究中精确度更高。
Abstract:
In order to further improve the accuracy of ultra-short-term photovoltaic power generation prediction , based on data decomposition and reconstruction and deep learning technology , an ultra short-term photovoltaic power prediction method based on CEEMDAN-DBN-Seq2Seq was proposed. Firstly , Complete Ensemble Empirical Mode Decomposition with Adaptive Noise( CEEMDAN ) is use to decomposes the original generation data into a series of modal functions with more obvious characteristics in the time domain to extract the characteristics of the generation sequence on the time scale.Then , Deep Belief Network( DBN ) and Sequence to Sequence( Seq2Seq ) methods were used to predict the reconstructed modal components respectively.The experiments show that the proposed model has higher accuracy in the prediction research of photovoltaic power generation.

参考文献/References:

[ 1 ] 王小杨,罗多,孙韵琳,等 . 基于 ABC-SVM 和 PSORF 的光伏微电网日发电功率组合预测方法研究[ J ] .太阳能学报,2020 , 41 ( 3 ): 177-183.

[ 2 ] LIU J , FANG W L , ZHANG X D , et al.An improved photovoltaic power forecasting model with the assistance of aerosol index data [ J ] .IEEE Transactions on sustainable energy , 2015 , 6 ( 2 ): 434-442.
[ 3 ] ZHANG J L , TAN Z F , WEI Y M.An adaptive hybrid model for day-ahead photovoltaic output power prediction[ J ] .Journal of cleaner production , 2020 , 244 : 1-10.
[ 4 ] 虞海彪,李林,丁明,等 . 基于混沌特性分析和 Volterra 滤波器的光伏出力预测[ J ] . 电工电能新技术, 2020 , 39( 10 ): 39-46.
[ 5 ] QING X Y , NIU Y G.Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM [ J ] . Energy , 2018 , 148 : 461-468.
[ 6 ] 李正明,梁彩霞,王满商 . 基于 PSO-DBN 神经网络的光伏短期发电出力预测[ J ] . 电力 系统 保 护与 控制,2020 , 48 ( 8 ): 149-154.
[ 7 ] 阳霜,罗滇生,何洪英,等 . 基于 EMD LSSVM 的光伏发电系统功率预测方法研究[ J ] . 太阳能学报, 2016 , 37( 6 ): 1387-1395.
[ 8 ] 王育飞,付玉超,薛花 . 基于 Chaos-EEMD-PFBD 分解和 GA-BP 神经网络的光伏发电功率超短期预测法[ J ] . 太阳能学报, 2020 , 41 ( 12 ): 55-62.
[ 9 ] 赵会茹,赵一航,郭森 . 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[ J ] . 中国电力,2020 , 53 ( 6 ): 48-55.
[ 10 ] 杨茂,王凯旋 . 基于 CEEMD DBN 模型的光伏出力日前区间预测[ J ] . 高电压技术, 2021 , 47 ( 4 ): 1156-1164.
[ 11 ] HAO S Y , LEE D H , ZHAO D.Sequence to sequence learning with attention mechanism for short-term passenger flow prediction in large-scale metro system [ J ] .Transportation research part C : emerging technologies , 2019 , 107 : 287-300.
[ 12 ] YEH J R , SHIEH J S , HUANG N E.Complementary ensemble empirical mode decomposition : a novel noise enhanced data analysis method [ J ] .Advances in adaptive data analysis , 2010 , 2 ( 2 ): 135-156.
[ 13 ] HINTON G E.Training products of experts by minimizing contrastive divergence [ J ] .Neural computation , 2002 , 14 ( 8 ): 1771-1800.
[ 14 ] CHO K , MERRIENBOER B V , GULCEHRE C , et al.Learning phrase represent ations using RNN encoder-decoder for statistical machine translation[ C ]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing ( EMNLP ), 2014 : 1724-1734.
[ 15 ] SUTSKEVER I , VINYALS O , LE Q V , et al.Sequence to sequence learning with neural networks [ C ] // Proceedings of the 27th International Conference Neural Information Processing Systems-Volume 2( NIPS ’14 ), 2014 : 3104-3112.

相似文献/References:

[1]王骁贤,张保华,陆思良.基于连续小波变换和卷积神经网络的无刷直流电机故障诊断[J].机械与电子,2018,(06):29.
 WANG Xiaoxian,ZHANG Baohua,LU Siliang.Fault Diagnosis of Brushless Direct Current Motor Based on Continuous Wavelet Transform and Convolutional Neural Network[J].Machinery & Electronics,2018,(04):29.
[2]刘志宇,黄亦翔.基于深度学习和迁移学习的液压泵健康评估方法[J].机械与电子,2018,(09):67.
 LIU Zhiyu,HUANG Yixiang.Health Assessment for Hydraulic Pump Based on Deep Learning and Transfer Learning[J].Machinery & Electronics,2018,(04):67.
[3]吕燕兵.基于SG 算法和BP神经网络的 角度传感器信号处理研究[J].机械与电子,2020,(02):30.
 Research on Angle Sensor Measurement Method Based on SG Algorithm and BP Neural Network[J].Machinery & Electronics,2020,(04):30.
[4]肖倩宏,康 鹏,杜 江,等.深度学习在电网智能调控系统中应用研究[J].机械与电子,2021,(01):38.
 XIAO Qianhong,KANG Peng,DU Jiang,et al.Research on the Application of Deep Learning Theory in Power Grid Intelligent Dispatching[J].Machinery & Electronics,2021,(04):38.
[5]许 哲,张少帅,郭 璐,等.无人机深度学习去雾算法[J].机械与电子,2021,(04):13.
 XU Zhe,ZHANG Shaoshuai,GUO Lu,et al. Deep Learning Defogging Algorithm for UAV[J].Machinery & Electronics,2021,(04):13.
[6]齐爱玲1,李 琳1,朱亦轩2,等.基于融合特征的双通道CNN滚动轴承故障识别[J].机械与电子,2021,(05):15.
 QI Ailing,LI Lin,ZHU Yixuan,et al.Dual Channel CNN Bearing Fault Identification Based on Fusion Feature[J].Machinery & Electronics,2021,(04):15.
[7]龚泽宁,付 庄,付泽宇,等.血管介入操作力觉标定模块设计[J].机械与电子,2022,(06):3.
 GONG Zening,FU Zhuang,FU Zeyu,et al.Design of Force Calibration Module for Vascular Interventional Operation[J].Machinery & Electronics,2022,(04):3.
[8]江 励,熊达明,汤健华,等.自然光线环境中的空间物体快速识别和定位算法研究[J].机械与电子,2022,(06):8.
 JIANG Li,XIONG Daming,TANG Jianhua,et al.Recognition and Positioning Algorithm of Space Objects in Natural Light Environment[J].Machinery & Electronics,2022,(04):8.
[9]王西志,管声启,张理博,等.基于视觉引导的工业棒材上料系统研究[J].机械与电子,2023,41(05):19.
 WANG Xizhi,GUAN Shengqi,ZHANG Libo,et al.Research on Industrial Bar Feeding System Based on Visual Guidance[J].Machinery & Electronics,2023,41(04):19.

备注/Memo

备注/Memo:
收稿日期: 2021-11-23
基金项目:长安大学中央高校基本科研业务费专项资金资助( 300102321504 ,300102321501 ,300102321503 );西安市智慧高速公路信息融合与控制重点实验室( ZD13CG46 );陕西省重点研发计划( 2021GY-098 )
作者简介:徐先峰 ( 1982- ),男,山东泰安人,副教授,研究方向为深度学习理论及应用、交通能源融合理论、智能电网;郑少杰 ( 1997- ),男,福建莆田人,硕士研究生,研究方向为光伏故障诊断;赵 依 ( 1997- ),女,浙江杭州人,硕士研究生,研究方向为电力负荷预测;王世鑫 ( 1996- ),女,辽宁朝阳人,硕士研究生,研究方向为电力负荷预测;蔡路路 ( 1996- ),女,河南商丘人,硕士研究生,研究方向为新能源发电技术。
更新日期/Last Update: 2022-04-28