[1]高元将,黄明思,谢盛顿,等.基于粒子群算法的机械平台自动升降轨迹控制方法[J].机械与电子,2023,41(05):72-75.
 GAO Yuanjiang,HUANG Mingsi,XIE Shengdun,et al.Automatic Lifting Trajectory Control Method of Mechanical Platform Based on Particle Swarm Algorithm[J].Machinery & Electronics,2023,41(05):72-75.
点击复制

基于粒子群算法的机械平台自动升降轨迹控制方法()
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
41
期数:
2023年05期
页码:
72-75
栏目:
机电一体化技术
出版日期:
2023-05-25

文章信息/Info

Title:
Automatic Lifting Trajectory Control Method of Mechanical Platform Based on Particle Swarm Algorithm
文章编号:
1001-2257 ( 2023 ) 05-0072-04
作者:
高元将黄明思谢盛顿陈焕财潘孝龙
海南电网有限责任公司海南输变电检修分公司,海南 海口 570312
Author(s):
GAO Yuanjiang HUANG Mingsi XIE Shengdun CHEN Huancai PAN Xiaolong
( Hainan Power Transmission and Transformation Maintenance Branch , Hainan Power Grid Co. , Ltd. , Haikou 570312 , China )
关键词:
粒子群算法自动升降机械平台轨迹控制轨迹规划
Keywords:
particle swarm optimization automatic lifting mechanical platform trajectory control trajectory planning
分类号:
TH21
文献标志码:
A
摘要:
机械平台升降轨迹受到多个关节、连杆运动参量的影响,很难对其进行精准控制,因此提出基于粒子群算法的机械平台自动升降轨迹控制方法。分析机械平台结构与基本参数,构建机械平台升降轨迹模型,采用多项式插值方法插值处理机械平台升降轨迹,获得轨迹插值方程,确立升降轨迹控制函数。采用粒子群算法求解升降轨迹控制函数,算法输出结果即为升降轨迹最佳控制量,从而实现机械平台自动升降轨迹控制。实验结果表明,该方法获取最佳控制量迭代次数较少,升降轨迹控制效果较好,应用性能较佳。
Abstract:
The lifting trajectory of mechanical platform is affected by the motion parameters of multiple joints and connecting rods , so it is difficult to control it accurately.Therefore , an automatic lifting trajectory control method of mechanical platform based on particle swarm optimization algorithm is proposed. The structure and basic parameters of the mechanical platform are analyzed , the lifting trajectory model of the mechanical platform is constructed , the lifting trajectory of the mechanical platform is interpolated by polynomial interpolation method , the trajectory interpolation equation is obtained , and the lifting trajectory control function is established.The particle swarm optimization algorithm is used to solve the lifting trajectory control function , and the output result of the algorithm is the optimal control quantity of the lifting trajectory , so as to realize the automatic lifting trajectory control of the mechanical platform.The experimental results show that this method obtains the optimal control quantity , the number of iterations is less , and the lifting trajectory control effect is better , which shows that the application performance of this method is better.

参考文献/References:

[ 1 ] 郭娟 . 基于粒子群算法的双臂机器人运动轨迹优化研究[ J ] . 中国工程机械学报, 2020 , 18 ( 4 ): 324-329.

[ 2 ] 江鸿怀,金晓怡,邢亚飞,等 . 基于粒子群优化算法的五自由度机械臂轨迹规划[ J ] . 机械设计与研究, 2020 , 36( 1 ): 107-110.
[ 3 ] 刘明,杨明,高兴,等 . 基于粒子群的非规则区域连续覆盖星座设计[ J ] . 航天控制, 2020 , 38 ( 2 ): 31-37.
[ 4 ] 张文翔,董宏林 . 基于粒子群优化算法的机器人最优轨迹规划[ J ] . 机床与液压, 2020 , 48 ( 12 ): 166-170.
[ 5 ] 金荣玉,耿云海 . 空间机器人动力学奇异回避的笛卡尔轨迹规划[ J ] . 宇航学报, 2020 , 41 ( 8 ): 989-999.
[ 6 ] 朱文琦 . 基于 PLC 和粒子群算法的采摘机械手电气控制系统[ J ] . 农机化研究, 2021 , 43 ( 12 ): 238-241 , 246.
[ 7 ] 田劼,银晓琦,文艺成 . 基于混合 IWO-PSO 算法的掘进机截割轨迹规划方法 [ J ] . 工矿自动化, 2021 , 47( 12 ): 55-61.
[ 8 ] 郭海锋,黄贤恒,徐甲,等 . 基于动态自适应混沌粒子群优化算法的干线协调控制方法[ J ] . 高技术通讯, 2021 ,31 ( 11 ): 1189-1201.
[ 9 ] 刘林辉,朱永国,查青杉,等 . 基于双种群混沌搜索粒子群算法的机器人喷涂轨迹协同优化[ J ] . 计算机集成制造系统,2021 , 27 ( 11 ): 3148-3158.
[ 10 ] 李玖阳,胡敏,王许煜,等 . 基于 ALPSO 算法的低轨卫星小推力离轨最优控制方法[ J ] . 系统工程与电子技术,2021 , 43 ( 1 ): 199-207.
[ 11 ] 李虹,张韵悦,孙志毅,等 . 挖掘机分段多项式的时间最优轨迹规划[ J ] . 中国工程机械学报, 2020 , 18 ( 1 ): 7-13.
[ 12 ] 刘博,王小平,周成,等 . 基于 RHC-QPSO 算法的无人机动态航迹规划[ J ] . 电光与控制, 2020 , 27 ( 10 ): 1-7.
[ 13 ] 翟建华,邱来奇,魏晓华,等 . 基于改进粒子群算法的梯形转向机构设计及优化 [ J ] . 机械传动, 2020 , 44( 10 ): 86-95.
[ 14 ] 王晓光,吴军,林麒 . 欠约束绳牵引并联支撑系统运动学分析与鲁棒控制[ J ] . 清华大学学报(自然科学版),2021 , 61 ( 3 ): 193-201.
[ 15 ] 赖啸 . 基于抖动和时间的码垛食品机器人轨迹优化算法研究[ J ] . 食品与机械, 2020 , 36 ( 12 ): 74-78.

相似文献/References:

[1]李 力,陆金桂.基于PSO-BP神经网络的飞灰含碳量测量方法[J].机械与电子,2019,(04):68.
 .Prediction Method of Carbon Content in Fiy Ash Based on PSO-BP Neural Network[J].Machinery & Electronics,2019,(05):68.
[2]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
 ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(05):3.
[3]胡斐,李维嘉,汪潇.基于视觉引导的Delta型并联机器人运动优化[J].机械与电子,2018,(06):71.
 HU Fei,LI Weijia,WANG Xiao.Motion Optimization of Delta Parallel Robot Based on Visual Guidance[J].Machinery & Electronics,2018,(05):71.
[4]吕铁钢,张 亚,李世中.结合改进粒子群算法的RANSAC精确匹配方法[J].机械与电子,2017,(07):18.
 LYU Tiegang,ZHANG Ya,LI Shizhong.On RANSAC Accurate Matching Method Based on Improved Particle Swarm Optimization Algorithm[J].Machinery & Electronics,2017,(05):18.
[5]赵坤灿.基于粒子群算法的新能源集热系统物联网控制模型研究[J].机械与电子,2016,(12):54.
 ZHAO Kuncan.Research on the Model of IoT Control Based on PSO for New Energy Collector System[J].Machinery & Electronics,2016,(05):54.
[6]陈 强1,崔熙贵1,陈 峻2,等.基于粒子群算法的零部件多级装配定位策略优化[J].机械与电子,2020,(05):22.
 ,,et al.Locating Strategy Optimization of Multi-Stage Parts AssemblyBased on Particle Swarm Optimization[J].Machinery & Electronics,2020,(05):22.
[7]刘志勇 1,王小红 2.一种自适应粒子群算法的小波神经网络优化[J].机械与电子,2021,(08):8.
 LIU Zhiyong,WANG Xiaohong.A Wavelet Neural Network Optimization Method Based on Variable-Weight Particle Swarm Optimization[J].Machinery & Electronics,2021,(05):8.
[8]史绍恩.云计算中分布式软件系统兼容性自动检测方法[J].机械与电子,2021,(12):39.
 SHI Shao en.Automatic Compatibility Detection Method of Distributed Software System in Cloud Computing[J].Machinery & Electronics,2021,(05):39.
[9]陈 杰,韩海豹.基于改进粒子群算法的农业机械产品装配分组优化配置[J].机械与电子,2022,(01):30.
 CHEN Jie,HAN Haibao.Optimal Configuration of Agricultural Machinery Product Assembly Grouping Based on Improved Particle Swarm Algorithm[J].Machinery & Electronics,2022,(05):30.
[10]曲鹏举.改进粒子群算法在柔性作业加工时间问题研究[J].机械与电子,2023,41(01):3.
 QU Pengju.Research on Processing Time Problem of Improved Particle Swarm Optimization in Flexible Job[J].Machinery & Electronics,2023,41(05):3.

备注/Memo

备注/Memo:
收稿日期: 2022-03-10
作者简介:高元将 ( 1978- ),男,海南海口人,助理工程师,研究方向为电力系统;黄明思 ( 1988- ),男,海南安定人,中级工程师,研究方向为电力系统;谢盛顿 ( 1976- ),男,海南海口人,助理工程师,研究方向为电力系统;陈焕财 ( 1981- ),男,海南琼海人,助理工程师,研究方向为电力系统;潘孝龙 ( 1988- ),男,海南文昌人,助理工程师,研究方向为电力系统。
更新日期/Last Update: 2023-05-24