[1]曲鹏举.改进粒子群算法在柔性作业加工时间问题研究[J].机械与电子,2023,41(01):3-6.
 QU Pengju.Research on Processing Time Problem of Improved Particle Swarm Optimization in Flexible Job[J].Machinery & Electronics,2023,41(01):3-6.
点击复制

改进粒子群算法在柔性作业加工时间问题研究()
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
41
期数:
2023年01期
页码:
3-6
栏目:
设计与研究
出版日期:
2023-01-25

文章信息/Info

Title:
Research on Processing Time Problem of Improved Particle Swarm Optimization in Flexible Job
文章编号:
1001-2257 ( 2023 ) 01-0003-04
作者:
曲鹏举
贵州理工学院工程训练中心,贵州 贵阳 550003
Author(s):
QU Pengju
( Engineering Training Center , Guizhou Institute of Technology , Guiyang 550003 , China )
关键词:
粒子群算法幂函数自适应权重贝塔分布最小加工时间
Keywords:
particle swarm optimization cosine power function adaptive weight beta distribution minimum processing time
分类号:
TP301 ; TH16
文献标志码:
A
摘要:
为了减少柔性作业加工时长,在柔性作业加工问题中,提出一种改进粒子群算法 ( β-PSO )。该算法以最小加工时间为目标函数,惯性权重幂函数自适应调节,随机数采用贝塔分布进行改进,选取 Kacem 算例进行验证,通过对比 β-PSO 算法与标准粒子群算法( PSO )、余弦惯性权重改进粒子群算法( CPSO )的优化结果,β-PSO 算法加工时间均较低。实验结果表明,β-PSO 算法在减少柔性作业加工时间问题上的有效性。
Abstract:
In order to reduce the processing time of the flexible job , an improved particle swarm algorithm( β-PSO ) is proposed in the study of the flexible job processing problem , the minimum processing time is designed as the algorithm objective function , the inertia weight power function is adaptively adjusted , the random number is improved by beta distribution.The Kacem example is selected for verification. By comparing the optimization results of β-PSO algorithm with standard particle swarm optimization( PSO ) and cosine inertia weight improved particle swarm optimization( CPSO ), the processing time of β-PSO algorithm is lower.The experimental results verify the effectiveness of the β-PSO algorithm in reducing the processing time of flexible jobs.

参考文献/References:

[ 1 ] 顾幸生,丁豪杰 . 面向柔性作业车间调度问题的改进博弈粒子群算法[ J ] . 同济大学学报(自然科学版), 2020 ,48 ( 12 ): 1782-1789.

[ 2 ] ISMAYILOV G , TOPCUOGLU H R.Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing[ J ] .Future generation computer systems , 2020 , 102 : 307-322.
[ 3 ] 马学森,谈杰,陈树友,等 . 云计算多目标任务调度的优化粒子群算法研究[ J ] . 电子测量与仪器学报, 2020 , 34( 8 ): 133-143.
[ 4 ] 崔航浩,张春江,李新宇 . 基于带随机网络的多种群粒子群优化算法求解多资源受限柔性作业车间调度问题[ J ] . 重庆大学学报, 2022 , 45 ( 4 ): 56-66.
[ 5 ] 张闻强,邢征,杨卫东 . 基于多区域采样策略的混合粒子群优化求解多目标柔性作业车间调度问题[ J ] . 计算机应用,2021 , 41 ( 8 ): 2249-2257.
[ 6 ] 张立果,黎向锋,左敦稳,等 . 求解多目标柔性作业车间调度问题的两层遗传算法[ J ] . 计算机应用,2020 , 40(增刊 1 ): 14-22.
[ 7 ] DONG W Y , KANG L L , ZHANG W S.Opposition-based particle swarm optimization with adaptive mutation strategy [ J ] .Soft computing , 2017 , 21 ( 17 ):5081-5090.
[ 8 ] 胡志刚,常健,周舟 . 面向云环境中任务负载的粒子群优化调度策略[ J ] . 湖南大学学报(自然科学版), 2019 ,46 ( 8 ): 117-123.
[ 9 ] 胡棠清,张旭秀,曹晓月 . 一种动态调整惯性权重的混合粒子群算法[ J ] . 电光与控制, 2020 , 27 ( 6 ): 16-21.
[ 10 ] 周蓉,李俊,王浩 . 基于灰狼优化的反向学习粒子群算法[ J ] . 计算机工程与应用, 2020 , 56 ( 7 ): 48-56.
[ 11 ] 黄洋,鲁海燕,许凯波,等 . 一种动态调整惯性权重的简化均值粒子群优化算法[ J ] . 小型微型计算机系统 .2018 , 39 ( 12 ): 2590-2595.
[ 12 ] 王勇亮,王挺,姚辰 . 基于 Kent 映射和自适应权重的灰狼优化算法[ J ] . 计算机应用研究 .2020 , 37 (增刊 2 ): 37-40.
[ 13 ] 董红斌,李冬锦,张小平 . 一种动态调整惯性权重的粒子群优化算 法 [ J ] . 计算机科学,2018 , 45 ( 2 ): 98-102 , 139.
[ 14 ] KACEM I , HAMMADI S , BORNE P.Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems [ J ] . IEEE Transactions on systems , man , and cybernetics , part C , 2002 , 32 ( 1 ): 408-419.
[ 15 ] 黎书文,张成龙,周知进 . 基于改进粒子群算法的离散制造车间柔性调度优化[ J ] . 组合机床与自动化加工技术,2018 ( 11 ): 150-152.

相似文献/References:

[1]李 力,陆金桂.基于PSO-BP神经网络的飞灰含碳量测量方法[J].机械与电子,2019,(04):68.
 .Prediction Method of Carbon Content in Fiy Ash Based on PSO-BP Neural Network[J].Machinery & Electronics,2019,(01):68.
[2]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
 ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(01):3.
[3]胡斐,李维嘉,汪潇.基于视觉引导的Delta型并联机器人运动优化[J].机械与电子,2018,(06):71.
 HU Fei,LI Weijia,WANG Xiao.Motion Optimization of Delta Parallel Robot Based on Visual Guidance[J].Machinery & Electronics,2018,(01):71.
[4]吕铁钢,张 亚,李世中.结合改进粒子群算法的RANSAC精确匹配方法[J].机械与电子,2017,(07):18.
 LYU Tiegang,ZHANG Ya,LI Shizhong.On RANSAC Accurate Matching Method Based on Improved Particle Swarm Optimization Algorithm[J].Machinery & Electronics,2017,(01):18.
[5]赵坤灿.基于粒子群算法的新能源集热系统物联网控制模型研究[J].机械与电子,2016,(12):54.
 ZHAO Kuncan.Research on the Model of IoT Control Based on PSO for New Energy Collector System[J].Machinery & Electronics,2016,(01):54.
[6]陈 强1,崔熙贵1,陈 峻2,等.基于粒子群算法的零部件多级装配定位策略优化[J].机械与电子,2020,(05):22.
 ,,et al.Locating Strategy Optimization of Multi-Stage Parts AssemblyBased on Particle Swarm Optimization[J].Machinery & Electronics,2020,(01):22.
[7]刘志勇 1,王小红 2.一种自适应粒子群算法的小波神经网络优化[J].机械与电子,2021,(08):8.
 LIU Zhiyong,WANG Xiaohong.A Wavelet Neural Network Optimization Method Based on Variable-Weight Particle Swarm Optimization[J].Machinery & Electronics,2021,(01):8.
[8]史绍恩.云计算中分布式软件系统兼容性自动检测方法[J].机械与电子,2021,(12):39.
 SHI Shao en.Automatic Compatibility Detection Method of Distributed Software System in Cloud Computing[J].Machinery & Electronics,2021,(01):39.
[9]陈 杰,韩海豹.基于改进粒子群算法的农业机械产品装配分组优化配置[J].机械与电子,2022,(01):30.
 CHEN Jie,HAN Haibao.Optimal Configuration of Agricultural Machinery Product Assembly Grouping Based on Improved Particle Swarm Algorithm[J].Machinery & Electronics,2022,(01):30.
[10]汪 洋,俞建峰,等.电梯导轨校准机器人力位控制研究[J].机械与电子,2023,41(01):46.
 WANG Yang,YU Jianfeng,et al.Research on Force Position Control of Elevator Guide Rail Calibration Robot[J].Machinery & Electronics,2023,41(01):46.

备注/Memo

备注/Memo:
收稿日期: 2022-08-02
基金项目:贵州省教育厅青年科技人才成长项目(黔教合 KY 字[ 2018 ] 243 )
作者简介:曲鹏举 ( 1988- ),男,河南林州人,硕士,讲师,研究方向为先进制造模式与制造信息系统。
更新日期/Last Update: 2023-02-28