[1]王 晨,易廷茂,邵成龙.飞机自动驾驶仪故障诊断专家系统设计[J].机械与电子,2015,(01):70-72.
 WANG Chen,YI Tingmao,SHAO Chenglong.Design of Diagnostic Expert System for the Autopilot[J].Machinery & Electronics,2015,(01):70-72.
点击复制

飞机自动驾驶仪故障诊断专家系统设计
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2015年01期
页码:
70-72
栏目:
智能工程
出版日期:
2015-01-20

文章信息/Info

Title:
Design of Diagnostic Expert System for the Autopilot
文章编号:
1001-2257(2015)01-070-03
作者:
王 晨1易廷茂2邵成龙1
(1.南京航空航天大学自动化学院,江苏 南京 210016; 湖北航特装备制造股份有限公司,湖北 荆门 448000)
Author(s):
WANG Chen1 YI Tingmao2 SHAO Chenglong1
(1.College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2.Hubei Hangte Technology Co.,Ltd.,Jingmen 448000,China)
关键词:
故障树分析法 故障诊断 知识库 专家系统
Keywords:
fault tree analysis fault diagnosis knowledge base expert system
分类号:
TP182
文献标志码:
A
摘要:
设计了一种基于故障树的专家系统结构,建立了自动驾驶仪系统的故障树模型和专家诊断知识库,提出了一种基于故障树专家系统的自动驾驶仪系统故障诊断方法,开发了基于该方法的故障诊断实验平台。该方法通过对自动驾驶仪系统故障树模型进行分析,提取故障树最小割集及最小割集重要度,将专家系统作为框架、故障树作为诊断规则,并存入专家系统知识库,运用基于故障树最小割集重要度的推理机,实现故障树与专家系统的交互操作,最后完成诊断并输出结果。
Abstract:
Fault diagnosis is one of the hot topics in the field of the autopilotsafety.A diagnostic expert system(ES)for the autopilot s based on fault tree analysis(FTA)was designed,a fault diagnostic method of the autopilot system including a FTA model and a diagnostic knowledge database was introduced,and a platform of fault diagnostic system was implemented. The method gets the minimal cut sets and the importance of the cut sets by analyzing the FTA of the autopilotsystem,and uses them as diagnostic regulation of expert system. The fault tree accomplishes interaction with the expert system by using importance of the minimal cut sets,and outputs diagnostic results finally.

参考文献/References:

[1] 吴海桥.现代大型客机故障诊断专家系统的研究与开发[D].南京:南京航空航天大学,2002.
[2] 刘江.基于故障树的通用航空器故障诊断专家系统研究[D].广汉:中国民用航空飞行学院,2011.
[3] Sitter C J, Provan G M.Advance maintenance using causal networks[C]//The AIAA/IEEE/SAE Digital Avionics Systems Conference, 1998:1-8.
[4] Gill J J.Lessons learned from rotary and fixed-wing HUMS applications[C]//2000 IEEE Aerospace conference Proceeding, 2000, 6:423-431.
[5] Chan F T S.Application of a hybrid case-based reasoning approach in electroplating industry[J]. Expert System with Application,2005,29(1):121-130.
[6] 蔡宗平,汤正平,闵海波.故障树分析法的专家系统在故障诊断中应用[J].微计算机信息,2006,22(8):135-138.
[7] 朱大奇,于盛林.基于故障树最小割集的故障诊断方法研究[J].数据采集与处理,2002,17(3):341-344.
[8] 柳为东.汽车制动系统 FTA 法的故障诊断研究[D].西安:西北工业大学,2007.
[9] 蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

相似文献/References:

[1]吕明珠,苏晓明,陈长征,等.Fisher准则下的粒子群支持向量机在轴承故障诊断中的应用[J].机械与电子,2018,(07):49.
 LYU Mingzhu,SU xiaoming,CHEN Changzheng,et al.Application of Particle Swarm Support Vector Machine Based on Fisher Criterion in Bearing Fault Diagnosis[J].Machinery & Electronics,2018,(01):49.
[2]李 惠,陈蔚芳,商苏成.基于EEMD_BP网络的滚珠丝杠副故障模式识别[J].机械与电子,2018,(04):28.
 LI Hui,CHEN Weifang,SHANG Sucheng.Fault Pattern Recognition of Ball Screws Based on EEMD_BP Network[J].Machinery & Electronics,2018,(01):28.
[3]彭 刚,唐松平,张作刚,等.基于改进多分类概率SVM模型的变压器故障诊断[J].机械与电子,2018,(04):42.
 PENG Gang,TANG Songping,ZHANG Zuogang,et al.Fault Diagnosis for Power Transformer Based on Improved Multi-Classification Probabilistic Support Vector Machine[J].Machinery & Electronics,2018,(01):42.
[4]张思聪,傅攀,蒋恩超,等.QPSO-WT和QPSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(05):33.
 ZHANG Sicong,FU Pan,JIANG Enchao,et al.The Applications of QPSO-WT and QPSO-SVM in Fault Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(01):33.
[5]马益书,黄亚宇,吴 政.基于包络分析的滚动轴承故障诊断研究[J].机械与电子,2016,(01):63.
 MA Yishu,HUANG Yayu,WU Zheng.Study on Fault Diagnosis of Rolling Bearing Based on Envelope Analysis[J].Machinery & Electronics,2016,(01):63.
[6]肖迎群,何怡刚,张广辉.小波范数熵特征提取的模拟电路故障诊断方法[J].机械与电子,2015,(06):3.
 XIAO Yingqun,HE Yigang,ZHANG Guanghui.A Fault Diagnosis Approach of Electric Circuit Based on Wavelet Norm Entropy asFeature Extractor[J].Machinery & Electronics,2015,(01):3.

备注/Memo

备注/Memo:
收稿日期:2014-09-24
基金项目:国家自然科学基金资助项目(61473144)
作者简介:王 晨(1985-),男,江苏盐城人,硕士研究生,研究方向为人工智能、故障诊断; 易廷茂(1971-),男,湖北荆门人,高级工程师,研究方向为故障诊 断技术、机电控制技术。
更新日期/Last Update: 2015-01-25