参考文献/References:
[1] 吴海桥.现代大型客机故障诊断专家系统的研究与开发[D].南京:南京航空航天大学,2002.
[2] 刘江.基于故障树的通用航空器故障诊断专家系统研究[D].广汉:中国民用航空飞行学院,2011.
[3] Sitter C J, Provan G M.Advance maintenance using causal networks[C]//The AIAA/IEEE/SAE Digital Avionics Systems Conference, 1998:1-8.
[4] Gill J J.Lessons learned from rotary and fixed-wing HUMS applications[C]//2000 IEEE Aerospace conference Proceeding, 2000, 6:423-431.
[5] Chan F T S.Application of a hybrid case-based reasoning approach in electroplating industry[J]. Expert System with Application,2005,29(1):121-130.
[6] 蔡宗平,汤正平,闵海波.故障树分析法的专家系统在故障诊断中应用[J].微计算机信息,2006,22(8):135-138.
[7] 朱大奇,于盛林.基于故障树最小割集的故障诊断方法研究[J].数据采集与处理,2002,17(3):341-344.
[8] 柳为东.汽车制动系统 FTA 法的故障诊断研究[D].西安:西北工业大学,2007.
[9] 蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
相似文献/References:
[1]吕明珠,苏晓明,陈长征,等.Fisher准则下的粒子群支持向量机在轴承故障诊断中的应用[J].机械与电子,2018,(07):49.
LYU Mingzhu,SU xiaoming,CHEN Changzheng,et al.Application of Particle Swarm Support Vector Machine Based on Fisher Criterion
in Bearing Fault Diagnosis[J].Machinery & Electronics,2018,(01):49.
[2]李 惠,陈蔚芳,商苏成.基于EEMD_BP网络的滚珠丝杠副故障模式识别[J].机械与电子,2018,(04):28.
LI Hui,CHEN Weifang,SHANG Sucheng.Fault Pattern Recognition of Ball Screws Based on EEMD_BP Network[J].Machinery & Electronics,2018,(01):28.
[3]彭 刚,唐松平,张作刚,等.基于改进多分类概率SVM模型的变压器故障诊断[J].机械与电子,2018,(04):42.
PENG Gang,TANG Songping,ZHANG Zuogang,et al.Fault Diagnosis for Power Transformer Based on Improved Multi-Classification
Probabilistic Support Vector Machine[J].Machinery & Electronics,2018,(01):42.
[4]张思聪,傅攀,蒋恩超,等.QPSO-WT和QPSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(05):33.
ZHANG Sicong,FU Pan,JIANG Enchao,et al.The Applications of QPSO-WT and QPSO-SVM in Fault Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(01):33.
[5]马益书,黄亚宇,吴 政.基于包络分析的滚动轴承故障诊断研究[J].机械与电子,2016,(01):63.
MA Yishu,HUANG Yayu,WU Zheng.Study on Fault Diagnosis of Rolling Bearing Based on Envelope Analysis[J].Machinery & Electronics,2016,(01):63.
[6]肖迎群,何怡刚,张广辉.小波范数熵特征提取的模拟电路故障诊断方法[J].机械与电子,2015,(06):3.
XIAO Yingqun,HE Yigang,ZHANG Guanghui.A Fault Diagnosis Approach of Electric Circuit Based on Wavelet Norm Entropy asFeature Extractor[J].Machinery & Electronics,2015,(01):3.