[1]刘丹,李旻,刘修泉.动态电容补偿在微机器人胶囊无线供能系统中的应用[J].机械与电子,2016,(02):31-34.
 LIU Dan,LI Min,LIU Xiuquan.Application of Dynamic Capacitance Compensation to Wireless Power Transmission System of Micro-robot Capsule[J].Machinery & Electronics,2016,(02):31-34.
点击复制

动态电容补偿在微机器人胶囊无线供能系统中的应用
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2016年02期
页码:
31-34
栏目:
设计与研究
出版日期:
2016-02-25

文章信息/Info

Title:
Application of Dynamic Capacitance Compensation to Wireless Power Transmission System of Micro-robot Capsule
作者:
刘丹1李旻1刘修泉2
(1. 华南理工大学机械与汽车工程学院,广东 广州 510641;2. 广州番禺职业技术学院,广东 广州 511483)
Author(s):
LIU Dan1 LI Min1 LIU Xiuquan2
(1. School of Mechanical and Automotive Engineering,South China University of Technology, Guangzhou 510641,China;2. Guangzhou Panyu Polytechnic, Guangzhou 511483,China)
关键词:
微机器人胶囊动态电容补偿频率控制谐振耦合
Keywords:
micro-robot capsule dynamic capacitance compensationfrequency controlresonant coupling
分类号:
TH24
文献标志码:
A
摘要:
微机器人胶囊采用电磁耦合无线能量传输时,为获得较高传输效率及功率,需使发射端和接收端在同一频率下达到理想谐振耦合状态。由于高频下线圈的分布电容、寄生电容以及等效电容的波动等因素影响,系统容易偏离原有的理想谐振状态,严重影响系统传输性能。分析了系统频率失谐的原因,提出一种动态电容补偿方法,通过反向补偿变化的电容值,使得系统重新恢复谐振状态,从而改善了系统的传输性能。实验结果表明该动态电容补偿方法是有效的。
Abstract:
When the energy for the micro-robot capsule is transmitted via electromagnetic coupling power transmission system, both the transmitter and the receiver should work at the same frequency to reach the desired resonant coupling state, so as to obtain higher transmission efficiency and output power. Due to the fluctuation of distributed capacitance, parasitic capacitance and equivalent capacitance, the system can easily deviate from the original ideal resonance state, thus decreasing the transmission performance. In this paper, the reason of frequency detuning is analyzed, and a dynamic capacitance compensation method is proposed. By reversely compensating for variations of the capacitance, this method can help the system regain resonant state and improve transmission performance. Experiment results indicate that the method of dynamic capacitance compensation is effective.

参考文献/References:

[1]顾卫忠. 无线胶囊内窥镜的研究进展和讨论[J]. 中国医疗设备,2011 ,26 (8):60 -63.
[2]潘国兵,颜国正,邱祥玲. 基于JPEC图像的无线胶囊内窥镜的设计[J].高技术通讯,2010 ,20 (1) :89 -93.
[3]Gimm Y M, Yoo H S, Kim M J, et al. Receiving coil analysis of wireless power transmission with inductive coupling[C]// IEEE Korea-Japan Microwave Conference, 2007:117-120.
[4]Nishmura T H,Eguchi T, Kubota A,et al. An improved transmission energy transformer for a noninvasive rechargeable battery to artificial organs[J]. Electronics Circuits and System, 2001, 3(8): 1209-1214.
[5]Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J].Science, 2007, 317(583):83-86.
[6]Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 323(1):34-48.
[7]Fu Wenzhen, Zhang Bo, Qiu Dongyuan. Study on frequency-tracking wireless power transfer system by resonant coupling[J].World of Inverters, 2009(8):2658-2663.
[8]周诗杰,孙跃,戴欣,等.电压型CPT系统输出品质与频率稳定性分析[J].电机与控制学报,2012, 16(6):25-29.
[9]Si P,Hu A P, Malpas S, et al. A frequency control method for regulating wireless power to implantable devices[J]. IEEE Transactions on Biomedical Circuits and Systems, 2008,2(1):22-29.
[10]Lenaerts B, Peeters F, Puers R. Closed-loop transductor-compensated class a driver for inductive links[C]//Solid-State Sensors, Actuators and Microsystems Conference Transducers International, 2007:65-68.

备注/Memo

备注/Memo:
收稿日期:2015-12-17
基金项目:机器人技术与系统国家重点实验室开放研究项目(SKLRS-2012-MS-03);华南理工大学基本科研业务费项目(2011ZM0057);广州市教育局羊城学者项目(10B009G);广州番禺区科技计划项目(2012-Z-03-64)
作者简介:刘丹(1991-),男,湖南邵阳人,硕士研究生,研究方向为微机电系统理论及其应用;李旻(1974-),男,江西南昌人,副教授,研究方向为机器人与微机械技术。
更新日期/Last Update: 2016-02-25