相似文献/References:
[1]汪 伟,李 军,翟旭升,等.某型航空发动机中介主轴承早期微弱故障诊断研究[J].机械与电子,2019,(06):6.
,,et al.Research on the Early Weak Fault Diagnosis of Aero-engine Intershaft Bearing[J].Machinery & Electronics,2019,(05):6.
[2]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(05):3.
[3]唐志宇,毛 兴,王路军.电力变压器绕组变形检测技术研究[J].机械与电子,2018,(11):53.
TANG Zhiyu,MAO Xing,WANG Lujun.Research on Power Transformer Winding Deformation Detection Technology[J].Machinery & Electronics,2018,(05):53.
[4]石大磊,傅 攀.基于CEEMD的滚动轴承振动信号自适应降噪方法[J].机械与电子,2018,(11):3.
SHI Dalei,FU Pan.Adaptive De-noising Method of Rolling Bearing Vibration Signal Based on CEEMD[J].Machinery & Electronics,2018,(05):3.
[5]马益书,黄亚宇,吴 政.基于包络分析的滚动轴承故障诊断研究[J].机械与电子,2016,(01):63.
MA Yishu,HUANG Yayu,WU Zheng.Study on Fault Diagnosis of Rolling Bearing Based on Envelope Analysis[J].Machinery & Electronics,2016,(05):63.
[6]朱亮亮,高 瞩,吉晓民.基于多重因素的滚动轴承寿命计算新方法[J].机械与电子,2015,(11):12.
ZHU Liangliang,GAO Zhu,JI Xiaomin.A New Method of Calculating the Rolling Bearing Life Based on the Effect of Multiple Factors[J].Machinery & Electronics,2015,(05):12.
[7]袁小凯,李 果,蒋屹新,等.基于 HS- ELM 的油浸式变压器故障诊断[J].机械与电子,2019,(12):30.
,,et al.Fault Diagnosis of Oil Immersion Transformer Based on HS-ELM Algorithm[J].Machinery & Electronics,2019,(05):30.
[8]孟庆宇.基于 EEMD- SVM 的自动扶梯主驱动轴轴承故障诊断方法研究[J].机械与电子,2020,(05):51.
Research on Fault Diagnosis Method for Main Drive Shaft Bearing of Escalator Based on EEMD-SVM [J].Machinery & Electronics,2020,(05):51.
[9]庄爱军.基于WA-ESN的建筑起重机械故障检测[J].机械与电子,2021,(01):67.
ZHUANG Aijun.Fault Detection of Construction Crane Based on WA-ESN[J].Machinery & Electronics,2021,(05):67.
[10]齐爱玲1,李 琳1,朱亦轩2,等.基于融合特征的双通道CNN滚动轴承故障识别[J].机械与电子,2021,(05):15.
QI Ailing,LI Lin,ZHU Yixuan,et al.Dual Channel CNN Bearing Fault Identification Based on Fusion Feature[J].Machinery & Electronics,2021,(05):15.
[11]吕明珠1,2,苏晓明 1,等. 改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用[J].机械与电子,2019,(01):42.
,,et al.Application of SVM Optimized by IPSO in Rolling Bearing Fault Diagnosis[J].Machinery & Electronics,2019,(05):42.
[12]吕明珠 苏晓明 陈长征 刘世勋.小波包能量熵与EMD结合分析法在风机滚动轴承故障诊断中的应用[J].机械与电子,2018,(06):8.
LYU Mingzhu,SU Xingming,CHEN Changzheng,et al.Application of Wavelet Packet Energy Entropy and EMD Conjoint Analysis in Fault Diagnosis of Wind Turbine Bearing[J].Machinery & Electronics,2018,(05):8.
[13]王振亚,刘 韬,王廷轩,等.不平衡技术在轴承故障诊断中的应用[J].机械与电子,2021,(06):29.
WANG Zhenya,LIU Tao,WANG Tingxuan,et al.Application of Unbalance Technique in Bearing Fault Diagnosis[J].Machinery & Electronics,2021,(05):29.
[14]周正南,刘 美,吴斌鑫,等.改进的布谷鸟算法优化极限学习机的石化轴承故障分类[J].机械与电子,2022,(07):3.
ZHOU Zhengnan,LIU Mei,et al.Improved Cuckoo Algorithm for Optimizing Extreme Learning Machine for Petrochemical Bearing Fault Classification[J].Machinery & Electronics,2022,(05):3.
[15]陈 宇,程道来,马向华,等.基于 WDCNN-LSTM 混合模型的滚动轴承故障诊断[J].机械与电子,2025,(02):9.
CHEN Yu,CHENG Daolai,MA Xianghua,et al.Fault Diagnosis of Rolling Bearing Based on WDCNN-LSTM Hybrid Model[J].Machinery & Electronics,2025,(05):9.