[1]杨伟力,于阳阳,罗达灿.基于小波包和PSO-Elman神经网络的滚动轴承故障诊断[J].机械与电子,2016,(05):13-17.
 YANG Weili,YU Yangyang,LUO Dacan.Rolling Bearing Fault Diagnosis Using Wavelet Packet Analysis and PSO-Elman Neural Network[J].Machinery & Electronics,2016,(05):13-17.
点击复制

基于小波包和PSO-Elman神经网络的滚动轴承故障诊断
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2016年05期
页码:
13-17
栏目:
设计与研究
出版日期:
2016-05-25

文章信息/Info

Title:
Rolling Bearing Fault Diagnosis Using Wavelet Packet Analysis and PSO-Elman Neural Network
作者:
杨伟力于阳阳罗达灿
(贵州民族大学贵州省模式识别与智能系统重点实验室,贵州 贵阳 550025)
Author(s):
YANG WeiliYU YangyangLUO Dacan
(Key Laboratory of Pattern Recognition and Intelligent Systems of Guizhou Province,Guizhou Minzu University,Guiyang 550025,China)
关键词:
故障诊断滚动轴承小波包PSO-Elman神经网络
Keywords:
fault diagnosisrolling bearingwavelet packetPSO-Elman neural network
分类号:
TH133.3;TP183
文献标志码:
A
摘要:
针对滚动轴承的故障诊断,分析滚动轴承故障机理及特点,提出基于小波包分析的滚动轴承振动信号的特征向量提取算法,并建立PSO-Elman神经网络进行故障诊断和识别。将滚动轴承故障振动信号进行小波包分解,构造频带能量谱作为特征向量,输入PSO-Elman神经网络对故障进行识别。试验结果表明,基于小波包分析和PSO-Elman神经网络相结合的方法可准确地实现滚动轴承的故障诊断。
Abstract:
For the fault diagnosis of rolling bearing , the paper analyses the mechanism and characteristics of rolling bearing faults,presents an algorithm based on wavelet packet analysis of rolling bearing vibration signal feature vector extraction,and establishes the PSO-Elman neural network for fault diagnosis and identification.Wavelet package decomposition is performed for the fault vibration signal of the rolling bearing.The frequency band energy spectrum serves as the feature vector. It was input to the PSO-Elman neural network for fault identification.The test results show that the method based on the wavelet packet analysis and PSO-Elman neural network can accurately achieve the rolling bearing fault diagnosis.

参考文献/References:

[1]盛兆顺,尹琦领.设备状态监测与故障诊断技术应用[M].北京:化学工业出版社,2003.
[2]左红,顾家铭,于锦禄. 基于支持向量机的滚动轴承故障诊断研究[J].轴承,2008(8):36-39.
[3]Wang W.Early detection of gear tooth cracking using the resonance demodulation technique[J]. Mechanical Systems and Signal Processing,2001,15(5):887-903.
[4]Nikolaou N G,Antoniadis I A.Rolling element bearing fault diagnosis using wavelet packets[J].NDT & E International,2002,35(3):197-205.
[5]Ekici S,Yildirim S,Poyraz M. A transmission line fault locator based on Elman recurrent networks[J].Applied Soft Computing,2009,9(1):341-347.
[6]Liou C Y,Huang J C,Yang W C. Modeling word perception using the Elman network[J]. Neurocomputing,2008,71(16/18):3150-3157.
[7]Kennedy J,Eberhart R. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks,1995,4:1942-1948.
[8]虞和济,韩大庆,李沈.设备故障诊断工程[M].北京:冶金工业出版社,2001.
[9]Prabhakar S,Mohanty A R,Sekhar A S.Application of discrete wavelet transform for detection of ball bearing race faults[J].Tribology International,2002,35(12):793-800.
[10]Wang X H,Zhu C M,Mao H L,et al. Wavelet packet analysis for the propagation of acoustic emission signals across turbine runners[J]. NDT & E International,2009,42(1):42-46.
[11]Yen G G,Lin K C.Wavelet packet feature extraction for vibration monitoring[J].IEEE Transactions on Industrial Electronics,2006,47(3):650-667.
[12]Hu X,Wang Z Z,Ren X.Classification of surface EMG signal using relative wavelet packet energy[J].Computer Methods and Programs in Biomedicine,2005,79(3):189-195.
[13]Choi S.Detection of valvular heart disorders using wavelet packet decomposition and support vector machine[J].Expert Systems with Applications,2008,35(4):1679-1687.
[14]Feng Y H,Schlindwein F S.Normalized wavelet packets quantifiers for condition monitoring[J].Mechanical Systems and Signal Processing,2009,23(3):712-723.
[15]Wong W K,Yuen C W M,Fan D D,et al.Stitching defect detection and classification using wavelet transform and BP neural network[J].Expert Systems with Applications,2009,36(2):3845-3856.

相似文献/References:

[1]汪 伟,李 军,翟旭升,等.某型航空发动机中介主轴承早期微弱故障诊断研究[J].机械与电子,2019,(06):6.
 ,,et al.Research on the Early Weak Fault Diagnosis of Aero-engine Intershaft Bearing[J].Machinery & Electronics,2019,(05):6.
[2]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
 ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(05):3.
[3]唐志宇,毛 兴,王路军.电力变压器绕组变形检测技术研究[J].机械与电子,2018,(11):53.
 TANG Zhiyu,MAO Xing,WANG Lujun.Research on Power Transformer Winding Deformation Detection Technology[J].Machinery & Electronics,2018,(05):53.
[4]石大磊,傅 攀.基于CEEMD的滚动轴承振动信号自适应降噪方法[J].机械与电子,2018,(11):3.
 SHI Dalei,FU Pan.Adaptive De-noising Method of Rolling Bearing Vibration Signal Based on CEEMD[J].Machinery & Electronics,2018,(05):3.
[5]马益书,黄亚宇,吴 政.基于包络分析的滚动轴承故障诊断研究[J].机械与电子,2016,(01):63.
 MA Yishu,HUANG Yayu,WU Zheng.Study on Fault Diagnosis of Rolling Bearing Based on Envelope Analysis[J].Machinery & Electronics,2016,(05):63.
[6]朱亮亮,高 瞩,吉晓民.基于多重因素的滚动轴承寿命计算新方法[J].机械与电子,2015,(11):12.
 ZHU Liangliang,GAO Zhu,JI Xiaomin.A New Method of Calculating the Rolling Bearing Life Based on the Effect of Multiple Factors[J].Machinery & Electronics,2015,(05):12.
[7]袁小凯,李 果,蒋屹新,等.基于 HS- ELM 的油浸式变压器故障诊断[J].机械与电子,2019,(12):30.
 ,,et al.Fault Diagnosis of Oil Immersion Transformer Based on HS-ELM Algorithm[J].Machinery & Electronics,2019,(05):30.
[8]孟庆宇.基于 EEMD- SVM 的自动扶梯主驱动轴轴承故障诊断方法研究[J].机械与电子,2020,(05):51.
 Research on Fault Diagnosis Method for Main Drive Shaft Bearing of Escalator Based on EEMD-SVM [J].Machinery & Electronics,2020,(05):51.
[9]庄爱军.基于WA-ESN的建筑起重机械故障检测[J].机械与电子,2021,(01):67.
 ZHUANG Aijun.Fault Detection of Construction Crane Based on WA-ESN[J].Machinery & Electronics,2021,(05):67.
[10]齐爱玲1,李 琳1,朱亦轩2,等.基于融合特征的双通道CNN滚动轴承故障识别[J].机械与电子,2021,(05):15.
 QI Ailing,LI Lin,ZHU Yixuan,et al.Dual Channel CNN Bearing Fault Identification Based on Fusion Feature[J].Machinery & Electronics,2021,(05):15.
[11]吕明珠1,2,苏晓明 1,等. 改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用[J].机械与电子,2019,(01):42.
 ,,et al.Application of SVM Optimized by IPSO in Rolling Bearing Fault Diagnosis[J].Machinery & Electronics,2019,(05):42.
[12]吕明珠 苏晓明 陈长征 刘世勋.小波包能量熵与EMD结合分析法在风机滚动轴承故障诊断中的应用[J].机械与电子,2018,(06):8.
 LYU Mingzhu,SU Xingming,CHEN Changzheng,et al.Application of Wavelet Packet Energy Entropy and EMD Conjoint Analysis in Fault Diagnosis of Wind Turbine Bearing[J].Machinery & Electronics,2018,(05):8.
[13]王振亚,刘 韬,王廷轩,等.不平衡技术在轴承故障诊断中的应用[J].机械与电子,2021,(06):29.
 WANG Zhenya,LIU Tao,WANG Tingxuan,et al.Application of Unbalance Technique in Bearing Fault Diagnosis[J].Machinery & Electronics,2021,(05):29.
[14]周正南,刘 美,吴斌鑫,等.改进的布谷鸟算法优化极限学习机的石化轴承故障分类[J].机械与电子,2022,(07):3.
 ZHOU Zhengnan,LIU Mei,et al.Improved Cuckoo Algorithm for Optimizing Extreme Learning Machine for Petrochemical Bearing Fault Classification[J].Machinery & Electronics,2022,(05):3.
[15]陈 宇,程道来,马向华,等.基于 WDCNN-LSTM 混合模型的滚动轴承故障诊断[J].机械与电子,2025,(02):9.
 CHEN Yu,CHENG Daolai,MA Xianghua,et al.Fault Diagnosis of Rolling Bearing Based on WDCNN-LSTM Hybrid Model[J].Machinery & Electronics,2025,(05):9.

备注/Memo

备注/Memo:
收稿日期:2016-03-22
基金项目:贵州省科技合作计划课题(黔科合J字LKM[2012]09,黔科合LH字[2015]7208,黔科合LH字[2015]7216,黔科合LH字[2015]7217);贵州省教育厅自然科学研究项目(黔教合KY字[2015]428);贵州民族大学科研课题(15XJ008)
作者简介:杨伟力(1990-),男,仡佬族,贵州务川人,助教,研究方向为信息融合,智能机器人理论与技术。
更新日期/Last Update: 2016-05-25