[1]杨双根,孙远涛.速度扰动对可展结构动力学的影响研究[J].机械与电子,2017,(06):46-50.
 YANG Shuanggen,SUN Yuantao.Study on the Influence of Velocity Disturbance on the Dynamics of Deployable Structures[J].Machinery & Electronics,2017,(06):46-50.
点击复制

速度扰动对可展结构动力学的影响研究
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2017年06期
页码:
46-50
栏目:
设计与研究
出版日期:
2017-06-24

文章信息/Info

Title:
Study on the Influence of Velocity Disturbance on the Dynamics of Deployable Structures
文章编号:
1001-2257(2017)06-0046-05
作者:
杨双根12孙远涛12
(1.中国电子科技集团公司第三十八研究所,安徽 合肥 230088; 2.国家级工业设计中心(中电38所),安徽 合肥 230088)
Author(s):
YANG Shuanggen12 SUN Yuantao12
(1. No. 38 Research Institute of CETC, Hefei 230088, China; 2. National Industrial Design Center(CETC38), Hefei 230088, China)
关键词:
可展结构 绝对节点坐标 结构动力学 Newmark
Keywords:
deployable structure absolute nodal coordinate structural dynamics newmark
分类号:
TH113.1
文献标志码:
A
摘要:
在航天领域,由于运载火箭整流罩尺寸的限制,以及展开状态下低刚度天线难以承受发射时受到的载荷,所以可展结构在空间大型天线具有广泛的应用。可展结构在发射时保持折叠构型,当其到达指定的位置时需要展开,进而锁止保持一定的构型进行工作。但是可展结构进行工作时,不可避免的会受到速度的扰动,进而影响可展结构的工作精度。对可展结构基于绝对节点坐标法进行柔体描述,并建立结构动力学方程,运用Newmark数值法进行编程求解,分析了剪式单元可展结构受到速度扰动后,其结构动力学响应的问题,并得到了其响应曲线,研究结果对分析动力学控制具有重要的现实意义。
Abstract:
Deployable structure is widely applied in the space large antennas because of the limitation of the size of the launch vehicle fairing and the low stiffness of the launch antenna. Deployable structure can be folded at the time of launch, and be deployed while reaching the specified location, and then maintain a certain working configuration. However, when the deployable structure works, it will be inevitably disturbed by the speed, which will further affect its accuracy. Therefore, this paper tries to describe the deployable structure based on the method of absolute nodal coordinate, and conduct the programming by using the Newmark numerical method based on the structural dynamic equation. By analyzing its structural dynamic response for velocity disturbance, the response curve was obtained. The research results are of great practical significance to the analysis of dynamics control.

参考文献/References:

[1] WASFY Tamer M, NOOR Ahmed K, Multibody dynamic simulation of the next generation space telescope using finite elements and fuzzy sets[J]. Computer Methods In Applied Mechanics And Engineering,2000,190(5):803-824.
[2] TRAUTTTA, BAYO E., Cancelling vibrations in flexible articulated structures using non-causal inverse dynamics[J].IEE Proceedings - Control Theory and Applications, 2000,147(6):596-604.
[3] SHEN Yu, MONTMINY Steeve, ZHENG Wanping, Large SAR membrane antenna deployable structure design and dynamic simulation[C]// 48th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, 2007.
[4] ZHAO Jing Shan, WANG Jian Yi, CHU Fu Lei,et al.Structural dynamics of the foldable stairs, Proceedings of the Institution of Mechanical Engineers, Part C[J]. Journal of Mechanical Engineering Science,, 2012,226(10):2549-2572.
[5] WANG Zuo Wei, LI Tuan Jie, YAO Shen. Nonlinear dynamic analysis of space cable net structures with one to one internal resonances[J]. Nonlinear Dynamics,2014,78(2):1461-1475.
[6] DAI Lu, GUAN Fu Ling, GUEST James K. Structural optimization and model fabrication of a double-ring deployable antenna truss[J]. Acta Astronautica, 2014,94(2):843-851.
[7] TIAN Da Ke, DENG Zong Quan, LIU Rong Qiang, Analysis on dynamic response of truss structure for deployable truss antenna[C]//2011 World Congress on Intelligent Control and Automation( WCICA 2011).Taipei, Taiwan, 2011: 1185-1188.
[8] TIAN Da Ke,LIU Rong Qiang, DENG Zong Quan, et al. Analysis of dynamic characteristics of space deployable antenna based on ANSYS[C]// International Conference on Engineering Design and Optimization(ICEDO 2010). Ningbo, China, 2010: 127-130.
[9] GUO Hong Wei,LIU Rong Qiang, DENG Zong Quan, et al. Dynamic analysis and experiment of deployable truss structure for reflector antenna[C]//6th European Conference on Antennas and Propagation(EuCAP 2012).Prague, Czech republic, 2012: 827-831.
[10] SHABANA Ahemed A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics[J]. Nonlinear Dynamics, 1998,16(3): 293-306.
[11] SHABANA Ahemed A, HUSSIEN H A,ESCALONA J L.Application of the absolute nodal coordinate formulation to large rotation and large deformation problems[J]. Journal Of Mechanical Design, 1998,120(2): 188-195.
[12] SHABANA Ahemed A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements[J].Theory, Journal Of Mechanical Design, 2001,123(4):606-613.
[13] YAKOUB R Y, SHABANA Ahemed A. Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and applications[J].Journal Of Mechanical Design,2001, 123(4):614-621.
[14] OMARM. A,SHABANA Ahemed A.Two-dimensional shear deformable beam for large rotation and deformation problems[J]. Journal of Sound and Vibration, 2001, 243: 565-576.
[15] LIU Cheng, TIAN Qiang, HU Hai Yan. Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates[J]. Multibody System Dynamics, 2011,26:283-305.
[16] LIU Cheng, TIAN Qiang, HU Hai Yan. New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation[J].Nonlinear Dynamics,2012, 70(3):1903-1918.
[17] LIU Cheng, TIAN Qiang, YAN Dong,et al. Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF[J].Computer Methods in Applied Mechanics and Engineering, 2013,258: 81-95.
[18] ZHAO Jing Shan, CHU Fu Lei, FENG Zhi Jing. The mechanism theory and application of deployable structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2): 324-335.
[19] YU Lei, ZHAO Zhi Hua, TANG Jia Li, etc, Integration of absolute nodal elements into multibody system[J].Nonlinear Dynamics, 2010, 62(4):931-943.
[20] VALLEJO Garcia D, MAYO J, ESCALONA J L, et al.Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2004,35(4): 313-329.

备注/Memo

备注/Memo:
收稿日期:2017-02-11
作者简介:杨双根(1978-),男,安徽怀宁人,硕士,高级工程师,研究方向为空间有效载荷结构总体设计及热设计; 孙远涛(1985-),男,山东栖霞人,博士,工程师,研究方向为星载有效载荷结构总体设计。
更新日期/Last Update: 2017-06-25