参考文献/References:
[1] Kashiwagi M, Momoda T, Inada M.A time-domain nonlinear simulation method for wave-induced motions of a floating body[ J].The Society of Naval Architects of Japan, 1998, 84: 143-152.
[2] Koo W, Kim M H, Freely floating-body simulation by a 2D fully nonlinear numerical wave tank[J].Ocean Engineering, 2004, 31(16): 2011-2046.
[3] Hu C, Kashiwagi M. Two-dimensional numerical simulation and experiment on strongly nonlinear wave-body interactions[J]. Journal of Marine Science and Technology, 2009, 14(2): 200-213.
[4] Sueyoshi M, Kashiwagi M, Naito S. Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method[J]. Journal of Marine Science and Technology, 2008, 13(2): 85-94.
[5] Zhao X, Hu C. Numerical and experimental study on a 2-D floating body under extreme wave conditions[J]. Applied Ocean Research, 2012, 35(1): 1-13.
[6] Pathak A, Raessi M. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method[J].Journal ofComputational Physics. 2016,311:87-113.
[7] Shivaji G T, Sen D. Time domain simulation of side-by-side floating bodies using a 3D numerical wave tank approach[J]. Applied Ocean Research, 2016, 58:189-217.
[8] Gu H B, Causon D M, Mingham C G, et al. Development of a free surface flow solver for the simulation of wave/body interactions[J]. European Journal of Mechanics:B/Fluids, 2013, 38(3):1-17.
[9] 勾莹, 滕斌, 宁德志. 波浪与两相连浮体的相互作用[J].中国工程科学,2004,6(7):75-80.
[10] 王桂波. 波浪与铰接多浮体系统相互作用的数值分析[D].大连:大连理工大学, 2014.
[11] 梁辉, 林影炼, 方伟,等.水下脐带缆终端安装多浮体运动响应的数值模拟[J]. 机械与电子, 2015(10):17-19.
[12] 沈庆, 陈徐钧, 江召兵. 浮体和浮式多体系统流固耦合动力分析[M]. 北京:科学出版社, 2011.
[13] Fenton, J D. A fifth-order stokes theory for steady waves[J].Journal of Waterway, Port, Coastal and Ocean Engineering, 1985,111(2): 216-234.
-----------------------------------------------