[1]杨金钊,何清波.非平稳强噪条件下的视频相位放大技术研究[J].机械与电子,2018,(06):17-20.
 YANG Jinxi,HE Qingbo.Research on Phase-Based Video Motion Processing under Non-stationary and Strong Noise Conditions[J].Machinery & Electronics,2018,(06):17-20.
点击复制

非平稳强噪条件下的视频相位放大技术研究()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年06期
页码:
17-20
栏目:
设计与研究
出版日期:
2018-06-24

文章信息/Info

Title:
Research on Phase-Based Video Motion Processing under Non-stationary and Strong Noise Conditions
文章编号:
1001-2257(2018)06-0017-04
作者:
杨金钊何清波
(中国科学技术大学精密机械与精密仪器系,安徽 合肥 230026)
Author(s):
YANG Jinxi HE Qingbo
(Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China)
关键词:
视频相位放大复数金字塔参数化时频分析主成分分析非平稳信号处理
Keywords:
phase-based?video motion processing complex steerable pyramids parameterized time-frequency analysis principal component analysis non-stationary signal processing
分类号:
TP391.41
文献标志码:
A
摘要:
针对视频信号在非平稳和强噪声情况下,视频放大技术难以提取目标信号且会将频带内噪声同时放大的缺点,提出了一种基于参数化时频分析及主成分分析的滤波方法。将相变信号降维后,对降维信号做时频分析,提取其中的非平稳信号。不仅重构的信号具有良好的时频特性,且算法运算量也大大降低。实验结果表明,此方法在非平稳强噪信号提取方面具有明显优势。
Abstract:
If signals are in nonstationary and strong noise conditions, it will be difficult to use the phase-based video motion processing method to extract target signals. In addition, this method may also magnify noise in the frequency range. To solve these problems, this paper proposes a video motion processing method based on parameterized time-frequency analysis and principal component analysis.?Phase variation signals are projected onto a small number of principal components and filtered on time-frequency domain.?By using this method, reconstructed signals have good time-frequency characteristics, and the computational complexity of the algorithm could be greatly reduced.?The experimental results show that the proposed method has significant advantages in processing nonstationary strong noise signals.

参考文献/References:

[1]Fuchs M, Chen T, Wang O, et al. Real-time temporal shaping of high-speed video streams[J]. Computers and Graphics, 2010, 34(5): 575-584.

[2]Simoncelli E P, Freeman W T.The steerable pyramid: a flexible architecture for multi-scale derivative computation[C]// Proceedings of the IEEE International Conference on image Processing,1995, 3: 444-447.

[3]Wadhwa N,Rubinstein M,Durand F,et al.Phase-based video motion processing[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 80.

[4]Davis A,Rubinstein M,Wadhwa N, et al. The visual microphone: passive recovery of sound from video[J].ACM Transactions on Graphics (TOG), 2014, 33(4): 79.

[5]李燕,魏宗信,刘军.机电系统振动信号分析技术的研究[J].机械与电子,2010(2):30-32.

[6]杨扬.参数化时频分析理论、方法及其在工程信号分析中的应用[D].上海:上海交通大学,2013.

[7]Yang Y, Dorn C, Mancini T, et al. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification[J]. Mechanical Systems and Signal Processing, 2017, 85: 567-590.

备注/Memo

备注/Memo:

收稿日期:2018-03-15
基金项目:国家自然科学基金资助项目(51475441)

作者简介:杨金钊(1994-),男,安徽滁州人,硕士研究生,研究方向为设备状态监测与故障诊断;何清波(1980-),男,河南濮阳人,副教授,研究方向为机械系统动态监控、诊断与预知性维护等。

更新日期/Last Update: 2019-10-30