[1]胡斐,李维嘉,汪潇.基于视觉引导的Delta型并联机器人运动优化[J].机械与电子,2018,(06):71-75.
 HU Fei,LI Weijia,WANG Xiao.Motion Optimization of Delta Parallel Robot Based on Visual Guidance[J].Machinery & Electronics,2018,(06):71-75.
点击复制

基于视觉引导的Delta型并联机器人运动优化()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年06期
页码:
71-75
栏目:
智能工程
出版日期:
2018-06-24

文章信息/Info

Title:
Motion Optimization of Delta Parallel Robot Based on Visual Guidance
文章编号:
1001-2257(2018)06-0071-05
作者:
胡斐1李维嘉1汪潇1
(1. 华中科技大学船舶与海洋工程学院,湖北 武汉 430074)
Author(s):
HU Fei LI Weijia WANG Xiao
(School of Naval Architecture & Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)
关键词:
Delta机器人粒子群算法运动优化
Keywords:
Delta robot particle swarm optimization motion optimization
分类号:
TP242.2
文献标志码:
A
摘要:
针对Delta型并联机器人抓取过程中的快速性和稳定性问题,提出一种基于视觉引导的轨迹优化算法。通过获取视觉相机识别出的随机放置于传送带上的工件实时位置,以抓取路径最短和机构平稳性最优为综合优化目标,采用粒子群优化算法对抓取轨迹进行优化。选取工件以正态分布和平均分布2种方式随机分布在传送带上。仿真结果表明,优化后的抓取轨迹在提高抓取效率的同时有效降低了抓取运动对机构末端冲击。最后,通过实验验证了该算法的有效性。
Abstract:
This paper proposes a visual-guided trajectory optimization algorithm to improve the rapidity and stability during the gripping process of Delta parallel robot.?Firstly, the real-time position of the workpiece randomly distributed on the conveyor belt was captured by CCD camera.?Then, the picking and placing trajectory was optimized by using the particle swarm optimization algorithm to determine the shortest path and most stable mechanism.?Finally, the selected workpieces were randomly distributed on the conveyor belt in two ways, namely, the normal distribution and the even distribution. The simulation results show that the optimized trajectory not only improves the efficiency but also effectively reduces the impact on the end of the mechanism.

参考文献/References:

[1]李云辉.Delta并联机器人抓放轨迹优化[J].电气自动化,2016,38(3):20-22,70.

[2]王娜,王冬青,赵智勇.三自由度Delta并联机械手运动学分析及轨迹规划[J].青岛大学学报(工程技术版),2017,32(1):63-68.

[3]毛洪国. 基于动力学模型的DELTA机器人运动控制研究[D].哈尔滨:哈尔滨工业大学,2014.

[4]李旭宇,何风,尹东方.基于逆位移解的DELTA机器人工作空间分析[J].微电机,2017,50(8):75-79.

[5]倪鹤鹏,刘亚男,张承瑞,等.基于机器视觉的Delta机器人分拣系统算法[J].机器人,2016,38(1):49-55.

[6]Ding W ,Gu J ,Tang S , et al. Development of a calibrating algorithm for Delta robot’s visual positioning based on artificial neural network[J]. Optik - International Journal for Light and Electron Optics,2016,127(20):9095-9014.

[7]Zhang G Y ,Liu G F ,Guo X B ,et al.Dynamic conveyor tracking control of a Delta robot[J].Key Engineering Materials,2016, 679:43-48.

[8]郭谨玮,刘昱,徐月云,等.应用多目标粒子群算法的车辆传动系参数优化仿真研究[J/OL].机械科学与技术:1-7.

[9]卢锦玲,苗雨阳,张成相, 等.基于改进多目标粒子群算法的含风电场电力系统优化调度[J].电力系统保护与控制,2013,41(17):25-31.

相似文献/References:

[1]李 力,陆金桂.基于PSO-BP神经网络的飞灰含碳量测量方法[J].机械与电子,2019,(04):68.
 .Prediction Method of Carbon Content in Fiy Ash Based on PSO-BP Neural Network[J].Machinery & Electronics,2019,(06):68.
[2]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
 ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(06):3.
[3]吕铁钢,张 亚,李世中.结合改进粒子群算法的RANSAC精确匹配方法[J].机械与电子,2017,(07):18.
 LYU Tiegang,ZHANG Ya,LI Shizhong.On RANSAC Accurate Matching Method Based on Improved Particle Swarm Optimization Algorithm[J].Machinery & Electronics,2017,(06):18.
[4]赵坤灿.基于粒子群算法的新能源集热系统物联网控制模型研究[J].机械与电子,2016,(12):54.
 ZHAO Kuncan.Research on the Model of IoT Control Based on PSO for New Energy Collector System[J].Machinery & Electronics,2016,(06):54.
[5]陈 强1,崔熙贵1,陈 峻2,等.基于粒子群算法的零部件多级装配定位策略优化[J].机械与电子,2020,(05):22.
 ,,et al.Locating Strategy Optimization of Multi-Stage Parts AssemblyBased on Particle Swarm Optimization[J].Machinery & Electronics,2020,(06):22.
[6]刘志勇 1,王小红 2.一种自适应粒子群算法的小波神经网络优化[J].机械与电子,2021,(08):8.
 LIU Zhiyong,WANG Xiaohong.A Wavelet Neural Network Optimization Method Based on Variable-Weight Particle Swarm Optimization[J].Machinery & Electronics,2021,(06):8.
[7]史绍恩.云计算中分布式软件系统兼容性自动检测方法[J].机械与电子,2021,(12):39.
 SHI Shao en.Automatic Compatibility Detection Method of Distributed Software System in Cloud Computing[J].Machinery & Electronics,2021,(06):39.
[8]陈 杰,韩海豹.基于改进粒子群算法的农业机械产品装配分组优化配置[J].机械与电子,2022,(01):30.
 CHEN Jie,HAN Haibao.Optimal Configuration of Agricultural Machinery Product Assembly Grouping Based on Improved Particle Swarm Algorithm[J].Machinery & Electronics,2022,(06):30.
[9]曲鹏举.改进粒子群算法在柔性作业加工时间问题研究[J].机械与电子,2023,41(01):3.
 QU Pengju.Research on Processing Time Problem of Improved Particle Swarm Optimization in Flexible Job[J].Machinery & Electronics,2023,41(06):3.
[10]汪 洋,俞建峰,等.电梯导轨校准机器人力位控制研究[J].机械与电子,2023,41(01):46.
 WANG Yang,YU Jianfeng,et al.Research on Force Position Control of Elevator Guide Rail Calibration Robot[J].Machinery & Electronics,2023,41(06):46.

备注/Memo

备注/Memo:

收稿日期:2018-03-15
作者简介:胡斐(1992-),男,湖北随州人,硕士研究生,研究方向为计算机控制与仿真研究;李维嘉(1964-),男,河南郑州人,教授,博士研究生导师,研究方向为液压控制工程、工业机器人等,通信作者;汪潇(1984-),女,湖北汉川人,硕士研究生,研究方向为计算机控制与仿真研究。

更新日期/Last Update: 2019-10-30