[1]黄亚伟,陈 悦,黄晓华.基于遗传算法的二维最大类间方差法的优化[J].机械与电子,2018,(04):20-23.
 HUANG Yawei,CHEN Yue,HUANG Xiaohua.Optimization of Two-Dimensional Otsu Method Based on Genetic Algorithm[J].Machinery & Electronics,2018,(04):20-23.
点击复制

基于遗传算法的二维最大类间方差法的优化
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年04期
页码:
20-23
栏目:
设计与研究
出版日期:
2018-04-24

文章信息/Info

Title:
Optimization of Two-Dimensional Otsu Method Based on Genetic Algorithm
文章编号:
1001-2257(2018)04-0020-04
作者:
黄亚伟陈 悦黄晓华
(南京理工大学机械工程学院,江苏 南京 210094)
Author(s):
HUANG YaweiCHEN YueHUANG Xiaohua
(School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)
关键词:
图像分割 自适应 遗传算法 二维最大类间方差法
Keywords:
image segmentation self-adaption genetic algorithm two-dimensional Otsu Method
分类号:
TP751.1
文献标志码:
A
摘要:
针对经典的二维最大类间方差法存在时效性差的问题,提出一种快速实现方法。通过对原有的二维灰度直方图计算其边缘概率分布,将作为判别标准的离散度矩阵分解为2个一维类间方差之和,在保证原有鲁棒性的同时降低了算法的时间和空间复杂度。同时,与遗传算法相结合,加快寻优过程,且遗传过程中可以自动调节遗传控制参数,避免早熟。实验证明其运算速度提升约50%。
Abstract:
A fast implementation method is proposed to solve the problem of poor timeliness of the classical two-dimensional Otsu method. The edge probability distribution of the original two-dimensional gray histogram was calculated, and the discrete matrix was decomposed into the sum of two one-dimensional interclass variance, which ensured the original robustness while reducing the time and space complexity of the algorithm. Besides, the genetic algorithm was used to accelerate the optimization process and the genetic control parameters could be automatically adjusted in the genetic process to avoid premature. The experimental results show that the speed of calculation increases by 50%.

参考文献/References:

[1] 胡艺,杨帆,潘国峰. 一种改进的印刷电路板缺陷检测分割算法[J]. 科学技术与工程,2017,17(9):221-228.
[2] 王福斌,李迎燕,刘杰,等. 基于OpenCV的机器视觉图像处理技术实现[J]. 机械与电子,2010,28(6):54-57.
[3] 吴一全,樊军,吴诗婳. 改进的二维Otsu法阈值分割快速迭代算法[J]. 电子测量与仪器学报,2011,25(3):218-225.
[4] 刘金,金炜东.噪声图像的快速二维Otsu阈值分割[J].计算机应用研究,2013,30(10):3169-3171,3200.
[5] 李贤阳,黄婵. 一种结合改进Otsu法和改进遗传算法的图像分割方法[J]. 实验室研究与探索,2012,31(12):57-61,112.
[6] 吴昊,汪荣贵,方帅,等. 基于最小类内差和最大类间差的图像分割算法研究[J]. 工程图学学报,2011,32(1):67-75.

相似文献/References:

[1]唐德谦,李钧,姚保良,等.智能巡检机器人的电缆缺陷检测关键技术研究[J].机械与电子,2019,(03):76.
 TANG Deqian,LI Jun,YAO Baoliang,et al.Research on Key Technologies of Cable Inspection for Intelligent Inspection Robot[J].Machinery & Electronics,2019,(04):76.
[2]王鹏宇,游有鹏,杨雪峰.结合密度峰聚类的 K 均值图像分割算法[J].机械与电子,2019,(02):40.
 ,K-means Image Segmentation Algorithm Combined with Density Peak Clustering[J].Machinery & Electronics,2019,(04):40.
[3]石大磊,傅 攀.基于CEEMD的滚动轴承振动信号自适应降噪方法[J].机械与电子,2018,(11):3.
 SHI Dalei,FU Pan.Adaptive De-noising Method of Rolling Bearing Vibration Signal Based on CEEMD[J].Machinery & Electronics,2018,(04):3.
[4]林丽红,马铁军,徐培.Gabor变换在轮胎X光图像处理的应用[J].机械与电子,2016,(04):59.
 LIN Lihong,MA Tiejun,XU Pei.Application of Gabor Transform in X-ray Tire Image Processing[J].Machinery & Electronics,2016,(04):59.
[5]王建新1,朱 煜1,2,等.船体零件几何尺寸测量图像分割方法研究[J].机械与电子,2021,(05):68.
 WANG Jianxin,ZHU Yu,HU Xiaofeng,et al.Research on Image Segmentation for Geometric Dimension Measurement of Hull Parts[J].Machinery & Electronics,2021,(04):68.
[6]田 婷,陈 平,刘 宾.基于立体匹配技术的 X 射线分层成像方法研究[J].机械与电子,2021,(09):3.
 TIAN Ting,CHEN Ping,LIU Bin.Research on X-ray Layered Imaging Method Based on Stereo Matching Technology[J].Machinery & Electronics,2021,(04):3.
[7]包建国,邱鹏程,蒋兴福,等.基于图像分割的蒸发器二次侧管板清洗喷嘴自适应定位[J].机械与电子,2021,(11):3.
 BAO Jianguo,QIU Pengcheng,JIANG Xingfu,et al.Adaptive Positioning of Tubeplate Cleaning Nozzle on Secondary Side of Evaporator Based on Image Segmentation[J].Machinery & Electronics,2021,(04):3.
[8]徐 祥,陈 洪,叶文华.基于阈值分割和形态学相结合的金属废料 X 射线图像轮廓提取方法[J].机械与电子,2022,(04):31.
 XU Xiang,CHEN Hong,YE Wenhua.A Method for Extracting X-ray Image Contours of Metal Scraps Based on the Combination of Threshold Segmentation and Morphology[J].Machinery & Electronics,2022,(04):31.
[9]白 创,许百灵.半全局立体匹配算法的改进研究[J].机械与电子,2022,(11):3.
 BAI Chuang,XU Bailing.Improvement of Semi-global Stereo Matching Algorithm[J].Machinery & Electronics,2022,(04):3.
[10]曹鹏娟,王明泉,范 涛,等.基于改进 U-Net 的球栅阵列气泡缺陷检测方法[J].机械与电子,2023,41(01):20.
 CAO Pengjuan,WANG Mingquan,FAN Tao,et al.Defect Detection Method of Bubble in Ball Grid Array Based on Improved U-Net[J].Machinery & Electronics,2023,41(04):20.

备注/Memo

备注/Memo:
收稿日期:2017-11-25
作者简介:黄亚伟(1993-),男,江苏宜兴人,硕士研究生,研究方向为机械制造及自动化; 陈 悦(1989-),女,四川成都人,研究员实习员,研究方向为高等教育; 黄晓华(1969-),男,江苏南通人,副教授,硕士研究生导师,研究方向为机电一体化。
更新日期/Last Update: 2018-04-24