[ 1 ] 李勇,钱尼君,陈星斌,等 . 基于 EEMD Treelet 和高斯过程的起重机齿轮故障诊断[ J ] . 计算机测量与控制,2021 , 29 ( 7 ): 36-40 , 51.[ 2 ] 沈科宇 . 基于支持向量机的港口起重机减速箱故障诊断研究[ D ] . 南昌:华东交通大学,2020.
[ 3 ] HUANG S X , WANG X P , LI C F , et al.Data decomposition method combining permutation entropy and spectral substitution with ensemble empirical mode decomposition [ J ] .Measurement , 2019 , 139 : 438-453.
[ 4 ] 张安安,黄晋英,卫洁洁,等 . 基于 EMD SVD 与 PNN的行星齿轮箱故障诊断研究[ J ] . 机械传动,2018 , 42( 12 ): 160-165.
[ 5 ] SMITH S J.The local mean decomposition and its application to EEG perception data [ J ] .Journal of the royal society interface , 2005 , 2 ( 5 ): 443-454.
[ 6 ] JIA J D , REN G.An improved adaptive VMD method and its application in wear condition monitoring of main bearing [ J ] .Vibroengineering PROCEDIA , 2021 , 38 : 26-31.
[ 7 ] 王奉涛,柳晨曦,张涛,等 . 基于 k 值优化 VMD 的滚动轴承故障诊断方法 [ J ] . 振动、测试与诊断,2018 , 38( 3 ): 540-547.
[ 8 ] 刘建昌,权贺,于霞,等 . 基于参数优化 VMD 和样本熵的滚动轴承故障诊断[ J ] . 自动化学报, 2019 , 12 ( 12 ): 1-12.
[ 9 ] NAZARI M , SAKHAEI S M.Successive variational mode decomposition [ J ] .Signal processing , 2020 , 174 : 107610-1-107610-10.
[ 10 ] 谢小欣,胡建中,许飞云,等 . 一种基于多流形局部线性嵌入算法的故障诊断方法 [ J ] . 机械工程学报,2013 , 49 ( 11 ): 79-83.
[ 11 ] RIDDER D D , KOUROPTEVA O , OKUN O , et al. Supervised locally linear embedding [ C ]// Artificial Neural Networks and Neural Information Processing ICANN / ICONIP 2003 , 2003 : 333-341.