[1]邓德辉,郭剑东.基于改进平衡优化算法的多无人机网络覆盖技术[J].机械与电子,2023,41(05):51-55.
 DENG Dehui,GUO Jiandong.An Improved Equilibrium Optimization Algorithm for Multi-UAV Network Coverage Technology[J].Machinery & Electronics,2023,41(05):51-55.
点击复制

基于改进平衡优化算法的多无人机网络覆盖技术()
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
41
期数:
2023年05期
页码:
51-55
栏目:
智能工程
出版日期:
2023-05-25

文章信息/Info

Title:
An Improved Equilibrium Optimization Algorithm for Multi-UAV Network Coverage Technology
文章编号:
1001-2257 ( 2023 ) 05-0051-05
作者:
邓德辉 1 郭剑东 2
1. 南京航空航天大学自动化学院,江苏 南京 210016 ; 2. 南京航空航天大学中小型无人机先进技术工信部重点实验室,江苏 南京 210016
Author(s):
DENG Dehui1 GUO Jiandong2
( 1.College of Automation , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China ; 2.Key Laboratory of Advanced Technology for Small and Medium-Sized UAV , Ministry of Industry and Information Technology , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China )
关键词:
多无人机网络覆盖优化平衡优化算法莱维飞行覆盖率
Keywords:
multi-UAV network coverage optimization equilibrium optimizer algorithm Levy flight network coverage
分类号:
V249.1
文献标志码:
A
摘要:
针对通信受限区域网络覆盖优化问题,提出一种改进平衡优化算法,提高多无人机编队飞行网络覆盖率。分析无人机网络覆盖特性,对多无人机进行网络覆盖面积建模,完成无人机数量预估;采用随机反向学习机制生成平均初始种群个体,提高了平衡池候选解的样本分布;对候选解采用莱维飞行方法进行优化迭代,提高了算法的收敛速度;并引入非线性递减的变种群数量策略,动态调整平衡算法的粒子数量,有效地提升了算法的计算效率。设计算法仿真样例,仿真结果表明,所设计的改进型算法比传统的平衡优化算法迭代次数减小近 50% ,同时目标区域的网络覆盖率得到显著提升。
Abstract:
Aiming at the problem of network coverage optimization in communication-constrained areas , an improved equilibrium optimizer algorithm is proposed to increase the network coverage of multi UAV formation flight.According to the characteristics of UAV network coverage , the model of multi UAV network coverage is developed and the number of UAVs is estimated.The random reverse learning mechanism is used to generate the average initial population individuals , which improves the sample distribution of the candidate solutions of the balance pool.The Levy flight method is used to optimize the candidate solution , which improves the convergence speed of the algorithm.In addition , a non-linear decreasing variable population number strategy is introduced to dynamically adjust the number of particles in the equilibrium optimizer-algorithm , which effectively raises the computational efficiency of the algorithm.A simulation example of the algorithm is designed.The simulation results show that the improved algorithm designed in this paper reduces the number of iterations nearly 50% as compared to the traditional balanced optimization algorithm , at the same time , the network coverage of the target area is significantly increased.

参考文献/References:

[ 1 ] HE C L.WSN coverage optimization based on artificial fish swarm algorithm [ C ] ∥International Conference on Big Data Analytics for Cyber-Physical-Systems ,2019 : 506-513.

[ 2 ] HUANG Y H , ZHANG J , WEI W , et al.Research on coverage optimization in a WSN based on an improved COOT bird algorithm [ J ] .Sensors , 2022 , 22 ( 9 ): 3383.
[ 3 ] 王巍,梁雅静,刘阳,等 . 城市灾区无人机网络自适应覆盖优化算法[ J ] . 计算机工程与应用, 2022 , 58 ( 14 ): 258-268.
[ 4 ] EL-FOULY F H , RAMADAN R A.E3AF : energy efficient environment-aware fusion based reliable routing in wireless sensor networks [ J ] .IEEE Access , 2020 , 8 : 112145-112159.
[ 5 ] SO-IN C , NGUYEN T G , NGUYEN N G.An efficient coverage hole-healing algorithm for area-coverage improvements in mobile sensor networks [ J ] .Peer-to-peer networking and applications , 2019 , 12 ( 3 ): 541-552.
[ 6 ] KONG H S , YU B.An improved method of WSN coverage based on enhanced PSO algorithm [ C ] ∥ 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference( ITAIC ) .New York : IEEE , 2019 : 1294-1297.
[ 7 ] QIAO Y , HSU H Y , PAN J S.Behaviour-based grey wolf optimiser for a wireless sensor network deployment problem [ J ] .International journal of Ad Hoc and ubiquitous computing , 2022 , 39 ( 1 / 2 ):70-82.
[ 8 ] RUI S , QIN C Y.On the probability perception model WSN distributed k coverage control algorithm [ C ] ∥ Proceedings of 2011 International Conference on Computer Science and Network Technology.New York : IEEE , 2011 , 1 : 328-331.
[ 9 ] MISHRA R R , MOHARANA L.Analysis of different grid types used for sensor deployment in wireless sensor network [ C ] ∥2015 Communication , Control and Intelligent Systems( CCIS ) .New York : IEEE , 2015 :91-95.
[ 10 ] BALAKRISHNAN K , DHANALAKSHMI R , KHAIRE M U.Excogitating marine predators algorithm based on random opposition ‐ based learning for feature selection [ J ] .Concurrency and computation : practice and experience , 2022 , 34 ( 4 ): 1-16.
[ 11 ] 滕志军,李哲,王幸幸,等 .WSN 中基于 μ 律爆炸算子的烟花虚拟力混合覆盖策略[ J / OL ] . 控制理论与应用,2022 [ 2022 10 10 ] .https : ∥kns.cnki.net / kcms / detail / 44.1240.TP.20211231.1323.030.html.

备注/Memo

备注/Memo:
收稿日期: 2022-10-19
基金项目:中央高校基本科研业务专项资金项目( NO.56XAC22030 )
作者简介:邓德辉 ( 1998- ),男,江西吉安人,硕士研究生,研究方向为无人机目标跟踪与控制;郭剑东 ( 1983- ),男,江苏徐州人,副研究员,硕士研究生导师,研究方向无人机飞行控制与导航。
更新日期/Last Update: 2023-05-24