[ 1 ] SINGLA A , PADAKANDLA S , BHATNAGAR S. Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited environment knowledge [ J ] .IEEE Transactions on intelligent transportation systems , 2019 , 22 ( 1 ): 107-118.[ 2 ] SANKET N J , SINGH C D , GANGULY K , et al.GapFlyt : active vision based minimalist structure-less gap detection for quadrotor flight [ J ] .IEEE Robotics and automation letters , 2018 , 3 ( 4 ): 2799-2806.
[ 3 ] KAUFMANN E , GEHRIG M , FOEHN P , et al.Beauty and the beast : optimal methods meet learning for drone racing [ C ]// 2019 International Conference on Robotics and Automation ( ICRA ) .New York : IEEE , 2019 : 690-696.
[ 4 ] WANG D S , LI W , LIU X G , et al.UAV environmental perception and autonomous obstacle avoidance : a deep learning and depth camera combined solution [ J ] . Computers and electronics in agriculture , 2020 ,175 : 105523.
[ 5 ] 杨兴隆 . 基于碰撞时间的多旋翼无人机视觉避障方法研究[ D ] . 上海:上海交通大学,2020.
[ 6 ] WOO J , KIM N.Collision avoidance for an unmanned surface vehicle using deep reinforcement learning [ J ] . Ocean engineering , 2020 , 199 : 107001.
[ 7 ] LOQUERCIO A , MAQUEDA A I , DEL BLANCO C R , et al.DroNet : learning to fly by driving [ J ] .IEEE Robotics and automation letters , 2018 , 3 ( 2 ): 1088-1095.
[ 8 ] HE K M , ZHANG X Y , REN S q , et al.Deep residual learning for image recognition [ C ]// 2016 IEEE Conference on Computer Vision and Pattern Recognition( CVPR ) .New York : IEEE , 2016 : 770-778.
[ 9 ] LIU Z , LIN Y T , CAO Y , et al.Swin transformer : Hierarchical vision transformer using shifted windows[ C ]// 2021 IEEE / CVF International Conference on Computer Vision ( ICCV ) .New York : IEEE , 2021 : 10012-10022.