[ 1 ] 李彤 . 基于运动可靠性的空间机械臂优化控制研究[ D ] . 北京:北京邮电大学,2016.[ 2 ] 劳可名,曾庆锋 . 取件机械臂定位精度的可靠性优化研究[ J ] . 机电工程, 2017 , 34 ( 7 ): 725-729.
[ 3 ] 王利明,邵毅敏 . 齿轮箱齿轮故障振动信号变尺度解调与振动特征提取算法研究[ J ] . 机械工程学报, 2020 , 56( 7 ): 95.
[ 4 ] MOHANTY S , GUPTA K K , RAJU K S .Hurst based vibro-acoustic Feature extraction of bearing using EMD and VMD [ J ] .Measurement , 2017 , 117 ( 7 ):200-220.
[ 5 ] 夏骏达,郑伟伦,王子涵,等 . 基于 EMD-LSTM 的船舶运动姿态短期预测[ J ] . 计算机与数字工程, 2022 , 50( 7 ): 1434-1438.
[ 6 ] 张鹏飞,岳建海,裴迪,等 . 基于 KPCA 和优化 HMM的货车制动系统故障诊断[ J ] . 计算机仿真,2022 , 39( 5 ): 167-171 , 244.
[ 7 ] 刘钊,孙洁娣,温江涛 . 基于多层面压缩深度神经网络的轴承故障诊断[ J ] . 电子测量与仪器学报,2022 , 36( 7 ): 189-198.
[ 8 ] AZARBIK M , SARLAK M .Real-time transient stability assessment using stacked auto-encoders [ J ] . COMPEL : The international journal of computations and mathematics in electrical , 2020 , 39 ( 4 ): 971-990.
[ 9 ] LUO G M , TAN Y J , LI M , et al.Stacked auto-encoder based fault location in distribution network [ J ] . IEEE Access , 2020 , 8 : 28043-28053.
[ 10 ] 鲍丹,侯保林 . 基于深度学习的单自由度机械臂定位可靠性估计 [ J ] . 振动与冲击,2021 , 40 ( 15 ): 246-252 , 283.
[ 11 ] LI M Y , WANG Z Q.LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems [ J ] .Reliability engineering and system safety , 2022 , 217 ( 6 ):108014.
[ 12 ] XIE C , ZHANG P , YAN Z.Correlation analysis of aeroengine operation monitoring using deep learning[ J ] .Soft computing , 2020 , 25 ( 1 ): 551-562.
[ 13 ] LI J C , YING Y L , REN Y , et al.Research on rolling bearing fault diagnosis based on multi-dimensional feature extraction and evidence fusion theory [ J ] .Royal society open science , 2019 , 6 ( 2 ): 1-14.
[ 14 ] 石坤举,朱文华,蔡宝,等 . 基于变分模态分解的轴承振动特征提取方法 [ J ] . 上海第二工业大学学报,2017 , 34 ( 4 ): 18-23.?
[ 15 ] ZHAO Z H , YANG S P .Sample entropy-based roller bearing fault diagnosis method [ J ] .Journal of vibration and shock , 2012 , 31 ( 6 ): 136-140.
[ 16 ] LIN S Y , CHIANG C C , HUNG Z S , et al.A dynamic data-driven fine-tuning approach for stacked auto encoder neural network [ C ]// IEEE International Conference on E-business Engineering , 2017 : 226-231.