[1]张海霞,徐 娟.基于自适应模糊神经网络推理系统的齿轮箱故障诊断方法[J].机械与电子,2015,(02):51-54.
 ZHANG Haixia,XU Juan.Gearbox Fault Detection Method Based on Adaptive Neuro-Fuzzy Inference System[J].Machinery & Electronics,2015,(02):51-54.
点击复制

基于自适应模糊神经网络推理系统的齿轮箱故障诊断方法
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2015年02期
页码:
51-54
栏目:
自动控制与检测
出版日期:
2015-02-25

文章信息/Info

Title:
Gearbox Fault Detection Method Based on Adaptive Neuro-Fuzzy Inference System
文章编号:
1001-2257(2015)02-0051-04
作者:
张海霞徐 娟
(秦皇岛供电公司,河北 秦皇岛 066004)
Author(s):
ZHANG HaixiaXU Juan
(Qinhuangdao Power Supply Company,Qinhuangdao 066004,China)
关键词:
状态监测 自适应模糊神经推理系统 齿轮箱故障 故障检测 运行参数
Keywords:
condition monitoring adaptive neuro-fuzzy inference system gearbox fault fault detection operating parameters
分类号:
TM93
文献标志码:
A
摘要:
研究利用从机械控制过程中获得的运行参数开发一种齿轮箱监测方法,而非振动与声音的传统测量方法。为了检测齿轮箱状态,采用一种自适应模糊神经推理系统来获取电机电流和控制参数之间的非线性相关性。比较自适应模糊神经推理系统模型产生的预测值和实测值来预测齿轮箱异常状态。试验结果表明,自适应模糊神经推理系统模型能够作为齿轮箱状态监测与故障检测的一种有效工具。
Abstract:
This study force to develop the gearbox monitoring methods using the operating parameters obtained from machine control processes rather than the traditional measurements such as vibration and acoustics.To monitor the gearbox conditions,an adaptive neuro-fuzzy inference system(ANFIS)is used to capture the nonlinear connections between the electrical motor current and control parameters such as load settings and temperature. The experimental results show that ANFIS model is able to serve as an efficient tool for gearbox condition monitoring and fault detection.

参考文献/References:

[1] 陈雪峰,李继猛,程航,等.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52.
[2] Hameed Z,Hong Y S,Cho Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009,13:1-39.
[3] McArthur S,Strachan S,Jahn G.The design of a multi-agent system for transformer condition monitoring[J].IEEE Transactions on Power System,2004,19(4):1845-1852.
[4] Bouillaut L,Sidahmed M.Helicopter gearbox vibrations:cyclo-stationary analysis or bilinear approach[C]. ISSPA,2001.
[5] Wilson Q W,Ismail F,Golnaraghi M F.Assessment of gear damage monitoring techniques using vibration measurements[J].Mechanical System and Signal Processing,2001,15(5):905-922.
[6] Baydar N,Ball A,A comparative study of acoustic and vibration signals in detection of gear failures using Winger-ville distribution[J].Mechanical System and Signal Processing,2001,15(6):1091-1107.
[7] Lin J,Zuo M J.Gearbox fault diagnosis using adaptive wavelet filter[J].Mechanical System and Signal Processing,2003,17(6):1259-1269.
[8] Hamidian D,Seyedpoor M.Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization[J].Journal of applied mathematical modeling,2010,34(6):1574-1585.
[9] 张智星,孙春在,水谷英二.神经-模糊和软计算[M].张平安,高春华,译.西安:西安交通大学出版社,2001.
[10] Jang S.ANFIS: Adaptive network-based fuzzy inference system[J].IEEE on Systems,Man and Cybernetics,1993,23(3):665-685.

相似文献/References:

[1]赵 蕾,高宏力,胡龙飞,等.基于遗传算法改进的OVO TWSVM 的机械密封状态研究[J].机械与电子,2019,(04):10.
 ,,et al.Classification of the State of Mechanical Seals Face Based on GA-OVO TWSVM[J].Machinery & Electronics,2019,(02):10.
[2]药 炜,张 凯,原 军,等.基于数字信号处理的电力光纤通信网络状态监测[J].机械与电子,2021,(07):24.
 YAO Wei,ZHANG Kai,YUAN Jun,et al.State Monitoring of Power Optical Fiber Communication Network Based on Digital Signal Processing[J].Machinery & Electronics,2021,(02):24.
[3]孙军红 1,谢云鹏 2,李铁梅 1,等.基于射频通信的液力耦合器多点监测系统的研究[J].机械与电子,2021,(09):41.
 SUN Junhong,XIE Yunpeng,LI Tiemei,et al.Research on Hydraulic Coupler Multipoint Monitoring System Based on RFC ommunication[J].Machinery & Electronics,2021,(02):41.
[4]刘 辉,李晓松,田晓雷,等.云调控与变电站设备监测技术融合应用研究[J].机械与电子,2024,42(01):37.
 LIU Hui,LI Xiaosong,TIAN Xiaolei,et al.Research on the Integration and Application of Cloud Regulation and Substation Equipment Monitoring Technology[J].Machinery & Electronics,2024,42(02):37.
[5]靳 丹,吴兆彬,金 珑,等.一种柔性接地线状态指示装置的设计与应用[J].机械与电子,2024,42(07):16.
 JIN Dan,WU Zhaobin,JIN Long,et al.Design and Application of a Flexible Grounding Wire Status Indication Device[J].Machinery & Electronics,2024,42(02):16.

备注/Memo

备注/Memo:
收稿日期:2014-10-22
作者简介:张海霞(1977-),女,河南驻马店人,工程师,硕士研究生,研究方向为电力系统运行、分析、控制和规划。
更新日期/Last Update: 2015-02-25