[1]文生平,张磊,刘其信.基于改进蚁群算法激光导航轮式机器人路径规划[J].机械与电子,2016,(05):73-76.
 WEN Shengping,ZHANG Lei,LIU Qixin.Path Planning for Laser Navigation Wheeled Robots Based on Improved Ant Colony Algorithm[J].Machinery & Electronics,2016,(05):73-76.
点击复制

基于改进蚁群算法激光导航轮式机器人路径规划
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2016年05期
页码:
73-76
栏目:
智能工程
出版日期:
2016-05-25

文章信息/Info

Title:
Path Planning for Laser Navigation Wheeled Robots Based on Improved Ant Colony Algorithm
作者:
文生平1张磊1刘其信2
(1.华南理工大学聚合物新型成型装备国家工程研究中心 聚合物加工工程教育部重点实验室,广东 广州 510640;2广州市井源机电设备有限公司,广东 广州 511400)
Author(s):
WEN Shengping1ZHANG Lei1LIU Qixin2
(1.National Engineering Research Center of Novel Equipment for Poly Processing,Key Laboratory of Poly Processing,Ministry of Education,South China University of Technology,Guangzhou 510640,China;2.Jingyuan Mechano-Electric Equipment Co.,Ltd.,Guangzhou 511
关键词:
激光导航轮式机器人路径规划改进蚁群算法Matlab
Keywords:
laser navigation wheeled robots path planning improved ant colony algorithm Matlab
分类号:
TP18;TP24
文献标志码:
A
摘要:
针对激光导航轮式机器人在复杂环境中路径规划原始算法存在路径较长和收敛速度较慢的问题,提出了一种改进蚁群算法。在实际算法中,先利用MAKLINK图论建立AGV运行环境的空间模型,接着用Dijkstra算法搜索优化路径;然后,在Dijkstra算法的基础上采用蚁群算法搜索最优路径;紧接着,在改进蚁群算法中,优先选择搜索前后两节点同起点到终点夹角一致或相差不大的后一个搜索节点,获取新的信息素更新策略,并进行角度的初始化和信息素计算;最后,在Matlab上完成算法的编写并得到仿真结果。结果表明,改进蚁群算法路径优化性能更好,对实际环境中机器人的路径规划具有指导意义。
Abstract:
This article puts forward an improved ant colony algorithm to deal with the problems of long planning path and low convergence rate present in the primal algorithm for path planning for the laser navigation wheeled robots in a complex environment. In actual algorithms, the graph theory of MAKLINK is used to establish the space model of the operating environment of AGV. Then the Dijkstra algorithm is used to search the optimal path, and the ant colony algorithm is used to search the optimal path based on Dijkstra. In the improved ant colony algorithm, by judging whether angle between previous and latter node is same or little different to angle between original and terminal node, the next node will be the latter one, thus obtaining new strategy of updated pheromone and allowing initialization of angle and calculation of pheromone. Finally, the whole algorithm is written on Matlab and simulated results are obtained. Results show that the path optimization performance in the improved ant colony algorithm is better, and has guiding significance in path planning for laser navigation wheeled robots in the real environment.

参考文献/References:

[1]张鹏,徐晓旭.改进型蚁群算法的全局路径规划仿真研究[J].航空计算技术,2013,43(6):1-4.
[2]邱莉莉,郑建立.基于改进蚁群算法的机器人路径规划[J].信息技术,2015(6):150-152.
[3]史峰,王辉,郁磊,等. Matlab智能算法30个案例分析[M]. 北京:北京航空航天大学出版社,2011.
[4]朱庆保,杨志军.基于变异和动态信息素更新的蚁群优化算法[J].软件学报,2004,15(2):185-192.
[5]段海滨.蚁群算法的原理及其应用[M].北京:科学出版社,2005.
[6]陈崚,沈洁,秦玲,等. 基于分布均匀度的自适应蚁群算法[J]. 软件学报,2003,14(8):1379-1387.
[7]Xi Y G,Zhang C G. Rolling path planning of mobile robot in a kind of dynamic uncertain environment[J]. Acta Automation Sinica,2002,28(2):161-175.
[8]Dorigo M,Birattari M,Stutzle T. Ant colony optimization:〖WT《Calibri》〗 〖WT#〗artificial ants as a computational intelligence technique[J].IEEE Computational Intelligence Magazine,2006,1(4):28-39.

相似文献/References:

[1]王 嵘,万永菁.一种基于SLAM 的多功能探索机器人设计[J].机械与电子,2019,(09):51.
 .Design of Multifunctional Exploration Robot Based on SLAM[J].Machinery & Electronics,2019,(05):51.
[2]谢智慧,卢道华,王 佳,等.基于改进蚁群算法的机器人路径规划问题研究[J].机械与电子,2019,(06):70.
 ,,et al.Research on Robot Path Planning Problem Based on Improved Ant Colony Algorithm[J].Machinery & Electronics,2019,(05):70.
[3]赵健,张阳.基于典型栅格地图的代价地图改进方法[J].机械与电子,2018,(12):73.
 ZHAO Jian,ZHANG Yang.Cost Map Improvement Method Based on Typical Grid Map[J].Machinery & Electronics,2018,(05):73.
[4]操松元1,陈 江2,严 波1,等.无人机巡检输电线路的路径规划算法研究[J].机械与电子,2019,(05):40.
 ,,et al.Research on Path Planning Algorithms for Unmanned Aerial Vehicle Patrol Inspection Transmission Lines[J].Machinery & Electronics,2019,(05):40.
[5]周嵘,张志翔,翟晓晖,等.机器人室内路径规划算法的实用性研究[J].机械与电子,2016,(08):71.
 ZHOU Rong,ZHANG Zhixiang,ZHAI Xiaohui,et al.Practical Research on Robot Path Planning Algorithm[J].Machinery & Electronics,2016,(05):71.
[6]白金柯,吴晓娜.一种新型蚁群随机树的机器人路径规划算法[J].机械与电子,2015,(07):73.
 BAI Jinke,WU Xiaona.Robot-path Planning Based on Ant Colony Optimization and Rapidly-exploring Random Tree[J].Machinery & Electronics,2015,(05):73.
[7]李积云,许亚军,蒲卫华,等.基于势场法的路径规划算法特性分析和路径优化[J].机械与电子,2020,(05):18.
 ,,et al. Characteristics Analysis of Algorithm and Methods of Optimizing Path Based on Artificial Potential Field Method[J].Machinery & Electronics,2020,(05):18.
[8]桑和成,宋栓军,唐铭伟,等.基于改进蚁群算法的机器人路径规划研究[J].机械与电子,2021,(02):17.
 Sang Hecheng,Song Shuanjun,Tang Mingwei,et al.Research on Robot Path Planning Based on Improved Ant Colony Algorithm[J].Machinery & Electronics,2021,(05):17.
[9]张晓晔 1,2,3,等.基于时间栅格法和最优搜索的电网巡检机器人避障路径规划方法[J].机械与电子,2021,(09):71.
 ZHANG Xiaoye,,et al.Obstacle Avoidance Path Planning Method for Power Grid Inspection Robot Based on Time Grid Method and Optimal Search[J].Machinery & Electronics,2021,(05):71.
[10]杨东旭,李宏军,郝晓博,等.面向晶圆图的芯片定位方法[J].机械与电子,2021,(10):32.
 YANG Dongxu,LI Hongjun,HAO Xiaobo,et al.Chip Location Method for Wafer Map[J].Machinery & Electronics,2021,(05):32.

备注/Memo

备注/Memo:
收稿日期:2016-03-04
基金项目:广州市科技计划项目(2015B090901020,201508010058)
作者简介:文生平(1966-),男,广东广州人,工学博士,研究方向为工业装备的智能控制及机器视觉;张磊(1990-),男,湖北汉川人,工学硕士,研究方向为工业装备的智能控制及机器视觉。
更新日期/Last Update: 2016-05-25