[1]耿冉冉,姚志远,周利锋.3-DOF并联微的运动学建模[J].机械与电子,2018,(06):3-7.
 GENG Ranran,YAO Zhiyuan,ZHOU Lifeng.Kinematic Model of a 3-DOF Parallel Micro-gripper[J].Machinery & Electronics,2018,(06):3-7.
点击复制

3-DOF并联微的运动学建模()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年06期
页码:
3-7
栏目:
设计与研究
出版日期:
2018-06-24

文章信息/Info

Title:

Kinematic Model of a 3-DOF Parallel Micro-gripper

文章编号:
1001-2257(2018)06-0003-05
作者:
耿冉冉姚志远周利锋
(南京航空航天大学机械结构力学及控制国家重点实验室,江苏 南京 210016)
Author(s):
GENG Ranran YAO ZhiyuanZHOU Lifeng
(State Key Laboratory of Mechanical Structure Mechanics nd Control, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
关键词:
微夹取器运动学模型空间坐标转换误差分析
Keywords:
micro-gripper kinematic model space coordinate transformation error analysis
分类号:
TP24
文献标志码:
A
摘要:

提出了一种新型的微夹取器结构,并对其进行了运动学建模和实验研究。首先,基于筷子操作原理的夹取方式,构建了一种由直线超声电机驱动的三自由度并联微夹取器。然后,将结构中的万向柔性铰链简化为球铰,利用空间坐标转换和矢量链法建立了微夹取器的运动学模型,分别得到了3条运动链的输入与输出之间的位移关系。最后,通过试验验证了该运动学模型的准确性,并分析了误差原因。对虾卵细胞进行的夹取实验结果表明,该微夹取器对夹取微小物体具有良好的操作性。

Abstract:
This study proposes a new type of micro-gripper and its kinematic model. Further studies and experiments on this micro-gripper are also included. Firstly, a three-degree-of-freedom parallel micro-clamping device driven by a linear ultrasonic motor was constructed based on the principle of using chopsticks. Then, the multi-directional flexible hinge in the structure was simplified as a ball hinge, and the kinematic model of the micro-gripper was established by transforming the space coordinate and applying the vector chain method.?Next, the displacement of three kinematic chains before the input and after the output was obtained respectively.?Finally, the accuracy of the kinematics model was verified by experiments, and the error causes were analyzed. Successful experiments on gripping a single shrimp embryo demonstrate that the micro-gripper has good performance in gripping micro-objects

参考文献/References:

[1]宋宇, 郭伟, 孙立宁. 基于微小型移动机器人的微操作系统[J]. 机械工程学报, 2007,43(2):96-103.

[2]李杨民, 汤晖, 徐青松, 等.面向生物医学应用的微操作机器人技术发展态势[J].机械工程学报, 2011,47(23):1-13.

[3]Roy D. Development of novel magnetic grippers for use in unstructured robotic workspace[J].Robotics and Computer-Integrated Manufacturing, 2015,35:16-41.

[4]Liu J, Gong Z, Tang K, et al. Locating end-effector tips in robotic micromanipulation[J]. IEEE Transactions on Robotics, 2014,30(1):125-130.

[5]Herrero S, Mannheim T, Prause I, et al. Enhancing the useful workspace of a reconfigurable parallel manipulator by grasp point optimization[J]. Robotics and Computer-Integrated Manufacturing, 2015,31:51-60.

[6]雷志刚, 黄心汉.机器人压电陶瓷微操作手的设计[J]. 兵工自动化, 2004,23(2):21-22,35.

[7]Zubir M N M, Shirinzadeh B, Tian Y. A new design of piezoelectric driven compliant-based microgripper for micromanipulation[J]. Mechanism and Machine Theory, 2009,44(12):2248-2264.

[8]Tanikawa T, Arai T. Development of a micro-manipulation system having a two-fingered micro-hand[J]. IEEE Transactions on Robotics and Automation, 1999,15(1):152-162.

[9]Geng R R, Mills J K, Yao Z Y. Design and analysis of a novel 3-DOF spatial parallel microgripper driven by LUMs[J]. Robotics and Computer-Integrated Manufacturing,2016,42: 147-155.

[10]付前卫,姚志远.用于驱动汽车天窗的直线超声电机设计[J].机械与电子,2016,34(7):30-33,45.

[11]曹会平,叶明, 姚志远,等. 直线超声电机精密运动平台系统模型辨识[J].机械与电子,2014(4):39-42.

[12]Geng R R, Mills J K, Yao Z Y. Design and analysis of a novel 3-DOF spatial parallel microgripper driven by LUMs[J]. Robotics and Computer-Integrated Manufacturing,2016,42: 147-155.


 

相似文献/References:

[1]杨 帆,谢如坤,刘芳华.下肢外骨骼的结构设计与仿真分析[J].机械与电子,2019,(06):64.
 ,Structural Design and Kinematics Simulation of Lower Extremity Exoskeleton Robot[J].Machinery & Electronics,2019,(06):64.
[2]周 恒 旭1,何 志 敏2,周 燕2.基于长短期记忆网络的机械臂逆运动学解[J].机械与电子,2020,(06):74.
 , Inverse Kinematics Solution of Robotic Manipulator Based on Long Short-term Memory Networks[J].Machinery & Electronics,2020,(06):74.
[3]耿冉冉,姚志远,徐 豪,等.柔性并联微夹取器的动力学分析及试验研究[J].机械与电子,2021,(02):33.
 GENG Ranran,YAO Zhiyuan,XU Hao,et al.Dynamic Analysis and Experimental Study of a Flexible Parallel Microgripper[J].Machinery & Electronics,2021,(06):33.
[4]李明倩,王 苗,刘 芳.基于智能 PID 算法的爬壁机器人位置伺服控制方法[J].机械与电子,2023,41(05):46.
 LI Mingqian,WANG Miao,LIU Fang.Position Servo Control Method of Wall Climbing Robot Based on Intelligent PID Algorithm[J].Machinery & Electronics,2023,41(06):46.
[5]曾国耀,曾国艺,肖小华.基于机械手搬运工件的生产线高效智能拣配系统[J].机械与电子,2023,41(09):37.
 ZENG Guoyao,ZENG Guoyi,XIAO Xiaohua.High Efficiency Intelligent Picking System for Production Line Based on Manipulator Handling Workpieces[J].Machinery & Electronics,2023,41(06):37.
[6]高熙贺.考虑舒适性的自动驾驶轨道列车牵引电机节能控制[J].机械与电子,2023,41(10):29.
 GAO Xihe.Energy Saving Control of Traction Motor of Automatic Train with Consideration of Comfort[J].Machinery & Electronics,2023,41(06):29.
[7]龚宇平,李金瑾,卿柏元,等.基于改进深度确定性策略梯度算法的智能装卸机械设备控制方法[J].机械与电子,2024,42(12):43.
 GONG Yuping,LI Jinjin,QING Baiyuan,et al.A Control Method for Intelligent Loading and Unloading Machinery Equipment Based on Improved Deep Deterministic Strategy Gradient Algorithm[J].Machinery & Electronics,2024,42(06):43.

备注/Memo

备注/Memo:
收稿日期:2018-03-08
基金项目: 国家自然科学基金资助项目(51275229);国家重大仪器设备开发专项(2012YQ100225)收稿日期:
作者简介:耿冉冉(1987-)女,汉族,山东济南人,博士研究生,研究方向为微型机械结构的模态及试验研究;姚志远(1961-),男,汉族,江苏镇江人,教授,博士研究生导师,研究方向为直线超声电机的结构设计、整机建模等,通信作者。
更新日期/Last Update: 2019-10-30