[1]薛连杰,张彪,张霄远,等.移动机器人基于激光点云定位建图的汽车宽度与方位估计[J].机械与电子,2018,(06):76-80.
 XUE Lianjie,ZHANG Biao,ZHANG Xiaoyuan,et al.Width and Orientation Identification of Cars Based on Lidar Localization and Mapping[J].Machinery & Electronics,2018,(06):76-80.
点击复制

移动机器人基于激光点云定位建图的汽车宽度与方位估计()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年06期
页码:
76-80
栏目:
智能工程
出版日期:
2018-06-24

文章信息/Info

Title:
Width and Orientation Identification of Cars Based on Lidar Localization and Mapping
文章编号:
1001-2257(2018)06-0076-05
作者:
薛连杰张彪张霄远齐臣坤
(上海交通大学机械与动力工程学院 机械系统与振动国家重点实验室, 上海 200240)
Author(s):
XUE Lianjie ZHANG Biao ZHANG Xiaoyuan QI Chenkun
(State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
关键词:
移动机器人汽车搬运点云分割宽度识别方位识别
Keywords:
mobile robot car transportation point cloud segmentation width recognition orientation identification
分类号:
TP242
文献标志码:
A
摘要:
在移动机器人抓取搬运作业中,识别待操作目标物体的宽度和方位是成功的关键。针对室外环境下停放的汽车搬运作业需求,提出一种识别待搬运汽车宽度和方位的方法。该方法基于三维激光传感器,先构建整个环境的三维点云地图,然后从地图中分离出目标汽车点云,最后将汽车点云向地面投影,根据投影的点云包围盒进行汽车的宽度和方位估计。采用室外实验验证了该方法的识别效果,其精度满足应用要求。
Abstract:
The key for a mobile robot to successfully grasp and transport target object is accurate identification of the width and orientation of the target object.?A method of identifying the width and orientation of an object is proposed for a mobile robot to transport cars outdoors.?This method is based on a three-dimensional laser sensor and SLAM technique.?Firstly, a three-dimensional point cloud map of the car and the environment was constructed. Then, the point cloud of the car was separated from the map.?Finally, the point cloud of the car was projected to the ground, and the width and orientation of the car was determined according to the bounding box of the projected point cloud.?The experiment shows that the proposed method is effective and its accuracy meets the application requirements.

参考文献/References:

[1]Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features[C]// European Conference on Computer Vision. 2010:778-792.

[2]Zhang J, Singh S. LOAM : lidar odometry and mapping in real-time[C]// Robotics: Science and Systems Conference, July, 2014.

[3]Zhang J, Singh S. Enabling aggressive motion estimation at low-drift and accurate mapping in real-time[C]// IEEE International Conference on Robotics and Automation, 2017:5051-5058.

[4]孙小凯.基于RGB-D信息的物体定位与识别[D].杭州:浙江大学, 2014.

[5]柯翔. 面向室内环境的服务机器人物体检测与识别研究[D].合肥:中国科学技术大学, 2013.

[6]鄢武. 基于ROS和点云库的室内三维物体识别与姿态估计[D].广州: 广东工业大学, 2016.

[7]Marton Z C, Goron L C , Rusu R B, et al. Reconstruction and verification of 3D object models for grasping[C]// Robotics Research - the International Symposium, 2009:315-328.

[8]Azim A, Aycard O. Detection, classification and tracking of moving objects in a 3D environment[C]//Intelligent Vehicles Symposium, 2012:802-807.

[9]B?rcs A, Nagy B, Baticz M, et al. A model-based approach for fast vehicle detection in continuously streamed urban LIDAR point clouds[C]//Asian Conference on Computer Vision, 2014:413-425.

[10]Ye Y, Fu L, Li B. Object detection and tracking using multi-layer laser for autonomous urban driving[C]// IEEE International Conference on Intelligent Transportation Systems, 2016:259-264.

[11]Besl P J, Mckay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002, 14(2):239-256.

[12]Dellaert F, Kaess M. Factor graphs for robot perception[J].Foundations and Trends? in Robotics 2017, 6(1 /2):1-139.

相似文献/References:

[1]姜烽,申燚,张成,等.基于差分进化遗传优化的移动机器人轨迹跟踪控制[J].机械与电子,2016,(07):67.
 JIANG Feng,SHEN Yi,ZHANG Cheng,et al.[J].Machinery & Electronics,2016,(06):67.
[2]赵健,张阳.基于典型栅格地图的代价地图改进方法[J].机械与电子,2018,(12):73.
 ZHAO Jian,ZHANG Yang.Cost Map Improvement Method Based on Typical Grid Map[J].Machinery & Electronics,2018,(06):73.
[3]刘利波,张文明.基于智能蚁群算法的移动机器人轨迹规划[J].机械与电子,2017,(11):62.
 LIU Libo,ZHANG Wenming.Trajectory Planning of Mobile Robot Based on Intelligent Ant Colony Algorithm[J].Machinery & Electronics,2017,(06):62.
[4]李 涛,魏 强,付 龙,等.四旋翼两栖机器人姿态求解与控制[J].机械与电子,2015,(10):62.
 LI Tao,WEI Qiang,FU Long,et al.Attitude Solving and Control of an Amphibious Robot Based on Four-rotor[J].Machinery & Electronics,2015,(06):62.
[5]李明磊,赵 杰,李 戈.面向方形节点拓扑地图下的移动机器人路径规划算法研究[J].机械与电子,2015,(10):67.
 LI Minglei,ZHAO Jie,LI Ge.Research on Path Planning Algorithm for Mobile Robot Based on Square Nodes in Topological Map[J].Machinery & Electronics,2015,(06):67.
[6]王雄奇1,柯艳国2,吴贤斌3,等.基于虚拟墙的移动机器人路径跟踪与实时避障方法[J].机械与电子,2019,(11):76.
 ,i,et al.A Virtual Wall-Based Path Tracking and Obstacle Avoidance Method for Mobile Robot[J].Machinery & Electronics,2019,(06):76.
[7]李孟锡,何博侠,周 俣.基于A*和蚁群算法的移动机器人多目标路径规划方法[J].机械与电子,2021,(06):61.
 LI Mengxi,HE Boxia,ZHOU Yu.Multi-target Path Planning Method for Mobile Robot Based on A* and Ant Colony Algorithm[J].Machinery & Electronics,2021,(06):61.
[8]武 刚,许家元,邸 迪.基于快速进行平方算法的巡检机器人路径规划研究[J].机械与电子,2024,42(02):74.
 WU Gang,XU Jiayuan,DI Di.Research on Path Planning of Inspection Robot Based on Fast Marching Square Method Algorithm[J].Machinery & Electronics,2024,42(06):74.
[9]姜海猛,张志安,潘孝斌.基于 A * 与 DWA 算法的融合优化策略研究[J].机械与电子,2024,42(10):15.
 JIANG Haimeng,ZHANG Zhi an,PAN Xiaobin.Research on Fusion Optimization Strategy Based on A* and Dynamic Window Approach Algorithms[J].Machinery & Electronics,2024,42(06):15.

备注/Memo

备注/Memo:
收稿日期:2018-03-21
作者简介:薛连杰 (1991-),男,河南商丘人,硕士研究生,研究方向为移动机器人,SLAM;张彪 (1995-),男,江苏扬州人,硕士研究生,研究方向为移动机器人激光SLAM;张霄远(1995-),男,上海人,硕士研究生,研究方向为移动机器人路径规划;齐臣坤(1977-),男,河北保定人,博士,副教授,研究方向为机器人控制。
更新日期/Last Update: 2019-10-30