[1]李 惠,陈蔚芳,商苏成.基于EEMD_BP网络的滚珠丝杠副故障模式识别[J].机械与电子,2018,(04):28-32.
 LI Hui,CHEN Weifang,SHANG Sucheng.Fault Pattern Recognition of Ball Screws Based on EEMD_BP Network[J].Machinery & Electronics,2018,(04):28-32.
点击复制

基于EEMD_BP网络的滚珠丝杠副故障模式识别
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年04期
页码:
28-32
栏目:
机电一体化技术
出版日期:
2018-04-24

文章信息/Info

Title:
Fault Pattern Recognition of Ball Screws Based on EEMD_BP Network
文章编号:
1001-2257(2018)04-0028-05
作者:
李 惠陈蔚芳商苏成
(南京航空航天大学机电学院,江苏 南京 210016)
Author(s):
LI HuiCHEN WeifangSHANG Sucheng
(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, China)
关键词:
EEMD 故障诊断 BP神经网络 滚珠丝杠副
Keywords:
EEMD fault diagnosis BP neural network ball screw
分类号:
TH17
文献标志码:
A
摘要:
针对在机械故障诊断领域,对信号的时频域处理分析提取特征值往往不能准确判断机械故障状态的问题。在对数控机床滚珠丝杠副振动信号研究中,提出了利用集合经验模态(EEMD)方法分析受到噪声干扰的3种不同状态的滚珠丝杠副振动信号。利用BP神经网络理论,以振动信号的时频域特征值及EEMD分解得到内禀模态函数(IFM)特征值作为输入,建立BP神经网络模型,并通过实验验证诊断网络模型的可靠性。
Abstract:
In the field of mechanical fault diagnosis, extracting eigenvalues from time-frequency analysis of signals cannot accurately determine the mechanical fault state. Therefore, in the study of vibration signal from ball screw pair of NC machine tools, three different states of ball screw vibration signals that are affected by noise are analyzed by using EEMD method. Based on the BP neural network theory, the time-frequency eigenvalues of the vibration signal and the IMF from EEMD analysis are used to establish the BP neural network of fault diagnostic recognition in ball screw. And the reliability of network model diagnosis is verified through experiments.

参考文献/References:

[1] 林宋,张超英,陈世乐.现代数控机床[M].北京:化学工业出版社,2011.
[2] Kin K,Parlos A G.Model-based fault diagnosis of induction motors using non-stationary signal segmentation[J]. Mechanical Systems and Signal Processing, 2002,16(2/3):223-253.
[3] Giurgiutiu V.Currtent issues invibration-based fault diagnostics andprognostics[C]∥SPIE's 9th AnnualInternational Symposium on SmartStructures and Materials and 7th Annual International Symposium on NDE for Health Monitoring and Diagnostics,2002.
[4] Wang W J.Wavelets for detecting mechanical faults with high sensitivity[J].Mechanical Systems and Signal Processing,2001,15(4):685-696.
[5] 黄鹍, 陈森发,元霞,等.基于粗集理论和支持向量机的多源信息融合方法及应用[J].模式识别与人工智能,2005,18(3):354-358.
[6] 王春.基于小波和分形理论的齿轮故障特征提取及噪声的和谐化研究[D].重庆:重庆大学, 2006.
[7] 欧阳华兵,徐温干.LabVIEW与C语言的接口技术及其应用[J].仪器仪表用户,2004,11(6): 75-77.
[8] 刘东升.基于EMD的滚珠丝杠振动信号滤波技术研究[J].机床与液压,2012,40(7): 51-55.
[9] 巩晓赟,王宏超,杜文辽,等.EEMD方法在转子碰摩故障诊断中的研究[J].电子测量与仪器学报,2017,31(3):415 -421.
[10] 郑直,姜万录,胡浩松,等.基于EEMD形态谱和KFCM聚类集成的滚动轴承故障诊断方法研究[J].振动工程学报,2015,28(2): 324-330.
[11] 龙泉,刘永前,杨勇平.基于粒子群优化BP神经网络的风电机组齿轮箱故障诊断方法[J].太阳能学报,2012,33(1):120-125.
[12] 李成,于永斌,王舜燕,等.基于BP和WTA神经网络的滚动轴承故障诊断方法研究[J].计算机与数字工程,2017,45(2):291-298.
[13] 裴峻峰,毕昆磊,吕苗荣,等.基于多特征参数和概率神经网络的滚动轴承故障诊断方法[J].中国机械工程,2014,25(15):2055-2058.
[14] 陈捷,张成强.基于BP神经网络的盘形成形铣刀的刀具磨损诊断研究[J].制造技术与机床,2010(12):34-37.
[15] 黄友朋,赵山,许凡,等.EEMD排列熵与PCA-GK的滚动轴承聚类故障诊断[J].河南科技大学学报(自然科学版),2017,38(2):17-24.

相似文献/References:

[1]吕明珠,苏晓明,陈长征,等.Fisher准则下的粒子群支持向量机在轴承故障诊断中的应用[J].机械与电子,2018,(07):49.
 LYU Mingzhu,SU xiaoming,CHEN Changzheng,et al.Application of Particle Swarm Support Vector Machine Based on Fisher Criterion in Bearing Fault Diagnosis[J].Machinery & Electronics,2018,(04):49.
[2]彭 刚,唐松平,张作刚,等.基于改进多分类概率SVM模型的变压器故障诊断[J].机械与电子,2018,(04):42.
 PENG Gang,TANG Songping,ZHANG Zuogang,et al.Fault Diagnosis for Power Transformer Based on Improved Multi-Classification Probabilistic Support Vector Machine[J].Machinery & Electronics,2018,(04):42.
[3]张思聪,傅攀,蒋恩超,等.QPSO-WT和QPSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(05):33.
 ZHANG Sicong,FU Pan,JIANG Enchao,et al.The Applications of QPSO-WT and QPSO-SVM in Fault Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(04):33.
[4]马益书,黄亚宇,吴 政.基于包络分析的滚动轴承故障诊断研究[J].机械与电子,2016,(01):63.
 MA Yishu,HUANG Yayu,WU Zheng.Study on Fault Diagnosis of Rolling Bearing Based on Envelope Analysis[J].Machinery & Electronics,2016,(04):63.
[5]王 晨,易廷茂,邵成龙.飞机自动驾驶仪故障诊断专家系统设计[J].机械与电子,2015,(01):70.
 WANG Chen,YI Tingmao,SHAO Chenglong.Design of Diagnostic Expert System for the Autopilot[J].Machinery & Electronics,2015,(04):70.
[6]肖迎群,何怡刚,张广辉.小波范数熵特征提取的模拟电路故障诊断方法[J].机械与电子,2015,(06):3.
 XIAO Yingqun,HE Yigang,ZHANG Guanghui.A Fault Diagnosis Approach of Electric Circuit Based on Wavelet Norm Entropy asFeature Extractor[J].Machinery & Electronics,2015,(04):3.
[7]孟庆宇.基于 EEMD- SVM 的自动扶梯主驱动轴轴承故障诊断方法研究[J].机械与电子,2020,(05):51.
 Research on Fault Diagnosis Method for Main Drive Shaft Bearing of Escalator Based on EEMD-SVM [J].Machinery & Electronics,2020,(04):51.

备注/Memo

备注/Memo:
收稿日期:2017-12-15
基金项目:国家04科技重大专项(2015ZX04001002)
作者简介:李 惠(1993-),女,安徽合肥人,硕士研究生,主要从事信号采集处理方面研究; 陈蔚芳(1966-),女,江苏无锡人,教授,博士研究生导师,主要从事数控技术研究。
更新日期/Last Update: 2018-04-24