参考文献/References:
[1] 林宋,张超英,陈世乐.现代数控机床[M].北京:化学工业出版社,2011.
[2] Kin K,Parlos A G.Model-based fault diagnosis of induction motors using non-stationary signal segmentation[J]. Mechanical Systems and Signal Processing, 2002,16(2/3):223-253.
[3] Giurgiutiu V.Currtent issues invibration-based fault diagnostics andprognostics[C]∥SPIE's 9th AnnualInternational Symposium on SmartStructures and Materials and 7th Annual International Symposium on NDE for Health Monitoring and Diagnostics,2002.
[4] Wang W J.Wavelets for detecting mechanical faults with high sensitivity[J].Mechanical Systems and Signal Processing,2001,15(4):685-696.
[5] 黄鹍, 陈森发,元霞,等.基于粗集理论和支持向量机的多源信息融合方法及应用[J].模式识别与人工智能,2005,18(3):354-358.
[6] 王春.基于小波和分形理论的齿轮故障特征提取及噪声的和谐化研究[D].重庆:重庆大学, 2006.
[7] 欧阳华兵,徐温干.LabVIEW与C语言的接口技术及其应用[J].仪器仪表用户,2004,11(6): 75-77.
[8] 刘东升.基于EMD的滚珠丝杠振动信号滤波技术研究[J].机床与液压,2012,40(7): 51-55.
[9] 巩晓赟,王宏超,杜文辽,等.EEMD方法在转子碰摩故障诊断中的研究[J].电子测量与仪器学报,2017,31(3):415 -421.
[10] 郑直,姜万录,胡浩松,等.基于EEMD形态谱和KFCM聚类集成的滚动轴承故障诊断方法研究[J].振动工程学报,2015,28(2): 324-330.
[11] 龙泉,刘永前,杨勇平.基于粒子群优化BP神经网络的风电机组齿轮箱故障诊断方法[J].太阳能学报,2012,33(1):120-125.
[12] 李成,于永斌,王舜燕,等.基于BP和WTA神经网络的滚动轴承故障诊断方法研究[J].计算机与数字工程,2017,45(2):291-298.
[13] 裴峻峰,毕昆磊,吕苗荣,等.基于多特征参数和概率神经网络的滚动轴承故障诊断方法[J].中国机械工程,2014,25(15):2055-2058.
[14] 陈捷,张成强.基于BP神经网络的盘形成形铣刀的刀具磨损诊断研究[J].制造技术与机床,2010(12):34-37.
[15] 黄友朋,赵山,许凡,等.EEMD排列熵与PCA-GK的滚动轴承聚类故障诊断[J].河南科技大学学报(自然科学版),2017,38(2):17-24.
相似文献/References:
[1]吕明珠,苏晓明,陈长征,等.Fisher准则下的粒子群支持向量机在轴承故障诊断中的应用[J].机械与电子,2018,(07):49.
LYU Mingzhu,SU xiaoming,CHEN Changzheng,et al.Application of Particle Swarm Support Vector Machine Based on Fisher Criterion
in Bearing Fault Diagnosis[J].Machinery & Electronics,2018,(04):49.
[2]彭 刚,唐松平,张作刚,等.基于改进多分类概率SVM模型的变压器故障诊断[J].机械与电子,2018,(04):42.
PENG Gang,TANG Songping,ZHANG Zuogang,et al.Fault Diagnosis for Power Transformer Based on Improved Multi-Classification
Probabilistic Support Vector Machine[J].Machinery & Electronics,2018,(04):42.
[3]张思聪,傅攀,蒋恩超,等.QPSO-WT和QPSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(05):33.
ZHANG Sicong,FU Pan,JIANG Enchao,et al.The Applications of QPSO-WT and QPSO-SVM in Fault Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(04):33.
[4]马益书,黄亚宇,吴 政.基于包络分析的滚动轴承故障诊断研究[J].机械与电子,2016,(01):63.
MA Yishu,HUANG Yayu,WU Zheng.Study on Fault Diagnosis of Rolling Bearing Based on Envelope Analysis[J].Machinery & Electronics,2016,(04):63.
[5]王 晨,易廷茂,邵成龙.飞机自动驾驶仪故障诊断专家系统设计[J].机械与电子,2015,(01):70.
WANG Chen,YI Tingmao,SHAO Chenglong.Design of Diagnostic Expert System for the Autopilot[J].Machinery & Electronics,2015,(04):70.
[6]肖迎群,何怡刚,张广辉.小波范数熵特征提取的模拟电路故障诊断方法[J].机械与电子,2015,(06):3.
XIAO Yingqun,HE Yigang,ZHANG Guanghui.A Fault Diagnosis Approach of Electric Circuit Based on Wavelet Norm Entropy asFeature Extractor[J].Machinery & Electronics,2015,(04):3.
[7]孟庆宇.基于 EEMD- SVM 的自动扶梯主驱动轴轴承故障诊断方法研究[J].机械与电子,2020,(05):51.
Research on Fault Diagnosis Method for Main Drive Shaft Bearing of Escalator Based on EEMD-SVM [J].Machinery & Electronics,2020,(04):51.