参考文献/References:
[1].沈美杰,赵龙章,周兵,等.基于PSO优化的RBF网络液压泵故障诊断研究[J].液压与气动,2016(5):87-92.
[2].Wang Z, Wang Z.Chaotic Parallel Support Vector Machine and its application for fault diagnosis of hydraulic pump[C]//Prognostics and Health Management.IEEE,2013:1-6.
[3].林杨,高思煜,刘同舜,等.基于深度学习的高速铣削刀具磨损状态预测方法[J].机械与电子,2017,35(07):12-17.
[4].孙文珺,邵思羽,严如强.基于稀疏自动编码深度神经网络的感应电动机故障诊断[J].机械工程学报,2016,52(9):65-71.
[5].Lv F, Wen C, Bao Z, et al.Fault diagnosis based on deep learning[C]//American Control Conference. American Automatic Control Council (AACC), 2016:6851-6856.
[6].赵光权,葛强强,刘小勇,等.基于DBN的故障特征提取及诊断方法研究[J].仪器仪表学报,2016,37(09):1946-1953.
[7].Liu R,Meng G,Yang B,et al.Dislocated Time Series Convolutional Neural Architecture: An Intelligent Fault Diagnosis Approach for Electric Machine[J].IEEE Transactions on Industrial Informatics,2017,13(3):1310-1320 .
[8].Dai W,Yang Q,Xue G R,et al.Boosting for transfer learning[C]//International Conference on Machine learning.ACM,2007,238(6):193-200.
[9].Irie G,Asami T,Tarashima S,et al.Cross-modal transfer with neural word vectors for image feature learning[C]//Acoustics, Speech and Signal Processing (ICASSP),2017 IEEE International Conference on Acoustics,2017:2916-2920.
[10].Akilan T,Wu Q M J,Yang Y,et al.Fusion of transfer learning features and its application in image classification[C]//Electrical and Computer Engineering (CCECE), 2017 IEEE 30th Canadian Conference on. IEEE, 2017: 1-5.
[11].Shen F,Chen C,Yan R,et al.Bearing fault diagnosis based on SVD feature extraction and transfer learning classification[C]//Prognostics and System Health Management Conference (PHM),2015. IEEE, 2015:1-6.
相似文献/References:
[1]王骁贤,张保华,陆思良.基于连续小波变换和卷积神经网络的无刷直流电机故障诊断[J].机械与电子,2018,(06):29.
WANG Xiaoxian,ZHANG Baohua,LU Siliang.Fault Diagnosis of Brushless Direct Current Motor Based on Continuous Wavelet Transform and Convolutional Neural Network[J].Machinery & Electronics,2018,(09):29.
[2]肖倩宏,康 鹏,杜 江,等.深度学习在电网智能调控系统中应用研究[J].机械与电子,2021,(01):38.
XIAO Qianhong,KANG Peng,DU Jiang,et al.Research on the Application of Deep Learning Theory in Power Grid Intelligent Dispatching[J].Machinery & Electronics,2021,(09):38.
[3]许 哲,张少帅,郭 璐,等.无人机深度学习去雾算法[J].机械与电子,2021,(04):13.
XU Zhe,ZHANG Shaoshuai,GUO Lu,et al. Deep Learning Defogging Algorithm for UAV[J].Machinery & Electronics,2021,(09):13.
[4]齐爱玲1,李 琳1,朱亦轩2,等.基于融合特征的双通道CNN滚动轴承故障识别[J].机械与电子,2021,(05):15.
QI Ailing,LI Lin,ZHU Yixuan,et al.Dual Channel CNN Bearing Fault Identification Based on Fusion Feature[J].Machinery & Electronics,2021,(09):15.
[5]徐先峰,郑少杰,赵 依,等.基于数据分解与重构的光伏发电功率超短期预测[J].机械与电子,2022,(04):20.
XU Xianfeng,ZHENG Shaojie,ZHAO Yi,et al.Ultra-short-term Prediction of Photovoltaic Power Generation Based on Data Decomposition and Deconstruction[J].Machinery & Electronics,2022,(09):20.
[6]江 励,熊达明,汤健华,等.自然光线环境中的空间物体快速识别和定位算法研究[J].机械与电子,2022,(06):8.
JIANG Li,XIONG Daming,TANG Jianhua,et al.Recognition and Positioning Algorithm of Space Objects in Natural Light Environment[J].Machinery & Electronics,2022,(09):8.
[7]王西志,管声启,张理博,等.基于视觉引导的工业棒材上料系统研究[J].机械与电子,2023,41(05):19.
WANG Xizhi,GUAN Shengqi,ZHANG Libo,et al.Research on Industrial Bar Feeding System Based on Visual Guidance[J].Machinery & Electronics,2023,41(09):19.
[8]王 青,吕绪山,党 帅,等.基于深度学习的纱管识别方法研究[J].机械与电子,2023,41(12):20.
WANG Qing,LYU Xushan,DANG Shuai,et al.Research on Yarn Bobbin Detection Method Based on Deep Learning[J].Machinery & Electronics,2023,41(09):20.
[9]姜越夫,王 青,吕绪山.改进 YOLOv5s 的纱管目标检测方法[J].机械与电子,2024,42(02):29.
JIANG Yuefu,WANG Qing,LYU Xushan.Improved YOLOv5s Method for Yarn Tube Object Detection[J].Machinery & Electronics,2024,42(09):29.
[10]谭继勇,罗 俊,谢江涛,等.基于鲸鱼优化和批量规范化卷积神经网络的振动信号去噪[J].机械与电子,2024,42(04):3.
TAN Jiyong,LUO Jun,XIE Jiangtao,et al.A Convolutional Neural Network with Whale Optimization and Batch Normalization for the Denoising of Vibration Signal[J].Machinery & Electronics,2024,42(09):3.