[1]张思聪,傅攀,蒋恩超,等.QPSO-WT和QPSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(05):33-36,41.
 ZHANG Sicong,FU Pan,JIANG Enchao,et al.The Applications of QPSO-WT and QPSO-SVM in Fault Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(05):33-36,41.
点击复制

QPSO-WT和QPSO-SVM在滚动轴承故障诊断中的应用
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年05期
页码:
33-36,41
栏目:
自动控制与检测
出版日期:
2018-05-24

文章信息/Info

Title:
The Applications of QPSO-WT and QPSO-SVM in Fault Diagnosis of Rolling Bearing
文章编号:
1001-2257(2018)05-0033-04
作者:
张思聪傅攀蒋恩超朱奥辉
(西南交通大学机械工程学院,四川 成都 610031)
Author(s):
ZHANG SicongFU PanJIANG EnchaoZHU Aohui
(Southwest Jiaotong University, Institution of Mechanical Engineering, Chengdu 610031,China)
关键词:
量子行为粒子群 小波变换 支持向量机 参数寻优 故障诊断
Keywords:
quantum-behaved particle swarm optimization(QPSO) wavelet transform SVM parameter optimization fault diagnosis
分类号:
TH133.33
文献标志码:
A
摘要:
为了解决小波降噪软阈值选择非最优以及SVM算法中惩罚参数、核函数参数的设置问题,将小波变换、支持向量机分别与量子行为粒子群优化算法QPSO(quantum-behaved particle swarm optimization,)相结合,利用QPSO优化小波阈值以及优化SVM输入参数,进行全局寻优,并将之应用到滚动轴承故障识别中。实验中,QPSO-WT滤波后信号具有更高的信噪比和更低的MSE,QPS0-SVM对10种不同状态的轴承进行故障诊断,对于多分类的情况该方法的识别精确度达到了87.67%,与SVM和RBF神经网络对比,从而进一步证明了该方法的有效性,说明该方法能够满足实际工况下的故障诊断要求。
Abstract:
For the problems of the wavelet threshold is not global optimal solution and punishment parameter and kernel function parameter setting problem in SVM algorithm, improved filtering algorithm and recognition algorithm based on wavelet threshold and SVM and quantum-behaved particle swarm optimization(QPSO)are proposed to improve above questions, and then applying this method to extract features in rolling bearing fault diagnosis. In experiments, QPSO-WT is better than traditional wavelet threshold in filtering, ten bearings with different conditions were diagnosed by QPSO-SVM, getting the result that Accuracy is as high as 87.67%, and Comparing with SVM and RBF neural network further confirmed the effectivity of this method.

参考文献/References:

[1]PENG Z K, CHU F L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography [J]. Mechanical Systems and Signal Processing,2004,18:199-221.
[2]VAFAEI S,PAHNEJAT H. Indicated repeatable runout with wavelet decomposition(IRR-WD)for effective determination of bearing-induced vibration [J]. Journal of Sound and Vibration, 2003, 260: 67-82.
[3]唐进元,陈维涛,陈思雨,等.一种新的小波阈值函数及其在振动信号去噪分析中的应用[J].振动与冲击, 2009(7): 118-121.
[4]克里斯特安尼,等. 支持向量机导论[M]. 李国正,王猛,曾华军,译.北京: 电子工业出版社, 2004.
[5]张小艳, 李强. 基于SVM的分类方法综述[J]. 科技信息, 2008(28): 350-351.
[6]ZHANG X Y, LIANG Y T, ZHONG J, et al. A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical model decomposition and optimized SVM[J]. Measurement, 2015, 69: 164-179.
[7]吴涛. 粒子群及量子行为粒子群优化算法的改进研究[D]. 成都:西南交通大学,2014.
[8]GAO F,GAO H G, LI Z Q,et al.Detecting unstable periodic orbits of nonlinear mappings by a novel quantum-behaved particle swarm optimization non-Lyapunov way[J].Chaos, Solitons & Fractals, 2009, 42(4): 2450-2463.
[9]LU Y,LIAO Z W,CHEN W F.An automatic registration framework using quantum particle swarm optimization for remote sensing images[R]. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, 2007, 2: 484-488.[10]Wei Fang, Jun Sun, Wenbo Xu. Design IIR digital filters using quantum-behaved Particle Swarm Optimization[J]. Lecture Notes in Computer Science, 2006, 4222: 637-640.
[11]Mao Long Xi, Jun Sun, Wen bo Xu. Parameter optimization of PID controller based on quantum-behaved particle swarm optimization algorithm[J]. Complex Systems and Applications, Modeling, Control and Simulations, 2007, 14: 603-607
[12]Jing Liu, Qi Wu, Da qi Zhu. Thruster fault-tolerant for UUVs based on quantum-behaved particle swarm optimization[J]. Opportunities and Challenges. Springer, 2009, 214: 65.
[13]Sun Jun, Xu Wen Bo. A Global Search Strategy of Quantum behaved Particle Swarm Optimization[R] IEEE Conference on Cybernetics and Intelligent Systems. 2004: 111-116.
[14]孟宗,李姗姗. 小波改进阈值去噪和经验模态分解相结合的旋转机械故障特征提取[J]. 机械强度, 2014, 1: 24-29.

相似文献/References:

[1]陈中孝,王 沛,张 盼.野外文物安防姿态传感器的信号优化设计[J].机械与电子,2015,(07):64.
 CHEN Zhongxiao,WANG Pei,ZHANG Pan.Optimized Design of Posture Sensor Signals in Wild Heritage Security System[J].Machinery & Electronics,2015,(05):64.

备注/Memo

备注/Memo:
收稿日期:2018-02-06
基金项目:中央高校基本科研业务费专项资金资助(2682016CX033)
作者简介:张思聪(1994-),男,重庆人,硕士研究生,研究方向为智能化状态监测与故障诊断;傅攀(1961-),男,河南浚县人,教授,博士研究生导师,研究方向为智能化状态监测与故障诊断。
更新日期/Last Update: 2018-05-24