参考文献/References:
[1] 王亚萍,许迪,葛江华,等.基于SPWVD时频图纹理特征的滚动轴承故障诊断[J].振动、测试与诊断,2017,37(1):115-119.
[2] 刘长良,闫萧.基于工况辨识和变分模态分解的风电机组滚动轴承故障诊断[J].动力工程学报,2017,37(4):273-278.
[3] 秦波,孙国栋,张利强,等.基于Hilbert包络谱奇异值和IPSO-SVM的滚动轴承故障诊断研究[J].机械传动,2017,41(3):166-171.
[4] Samanta B,Nataraj C.Use of particle swarm optimization for machinery fault detection[J]. Engineering Applications of Artificial Intelligence, 2009,22(2):308-316.
[5] Yuan S F, Chu F L.Fault diagnosis based on particleoptimization and support vector machines[J]. Mechanical Systems and Signal Processing, 2007,21(4):1787–1798.
[6] Li R, Sopon P, He D. Fault features extraction for bearing prognostics[J].Journal of Intelligent Manufacturing,2012,23(2):313–321.
[7] 付大鹏,翟勇,于青民.基于EMD和支持向量机的滚动轴承故障诊断研究[J].机床与液压,2017,45(11):184-187.
[8] 梅恒荣,殷礼胜,刘冬梅,等.改进粒子群算法优化的SVM模拟电路故障诊断[J].电子测量与仪器学报,2017, 31(8):1239-1246.
[9] 王刚,万敏,刘虎,等.粒子群优化模糊系统的铣削力建模方法[J].机械工程学报,2011,47(13):123-130.
[10] 郝伟,刘忠宝.基于Fisher准则的半监督特征提取方法[J].计算机工程与设计,2017,38(1):238-241.
[11] 杨青青,马训鸣,李海海,等.基于LabVIEW的冲击振动信号监测系统的设计[J].机械制造与自动化,2017,46(6):210-212.
[12] 胡智勇,胡杰鑫,谢里阳,等.滚动轴承振动信号处理方法综述[J].中国工程机械学报,2016,14(6):525-531.