[1]赵健,张阳.基于典型栅格地图的代价地图改进方法[J].机械与电子,2018,(12):73-76,80.
 ZHAO Jian,ZHANG Yang.Cost Map Improvement Method Based on Typical Grid Map[J].Machinery & Electronics,2018,(12):73-76,80.
点击复制

基于典型栅格地图的代价地图改进方法()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2018年12期
页码:
73-76,80
栏目:
智能工程
出版日期:
2018-12-24

文章信息/Info

Title:
Cost Map Improvement Method Based on Typical Grid Map
文章编号:
1001-2257(2018)12-0073-04
作者:
赵健张阳
(沈阳建筑大学机械工程学院,辽宁 沈阳 110168)
Author(s):
 ZHAO Jian ZHANG Yang
( School of Mechanical Engineering,Shenyang Jianzhu University, Shenyang 110168, China )
关键词:
移动机器人代价地图A*算法路径规划
Keywords:
mobile robot cost map A* Algorithm path planning
分类号:
TP301.6;TP242
文献标志码:
A
摘要:
针对具有多种路况的复杂环境,提出了一种基于栅格地图的代价地图构建方法。改进方法分别从移动机器人可通过安全性和可通过消耗性2方面对普通的布尔栅格地图进行改进。首先,建立以机器人与障碍物距离为变量的递减代价函数和以不同路况能耗占比为变量的代价函数;然后,根据2种代价函数确定每个栅格的代价值;最后,将生成的2种代价地图融合,得到改进地图。以A*算法为例,修改其估值函数以适应新的地图,通过仿真实验对比传统地图和改进地图下的路径规划情况。实验结果表明,相对于传统的栅格地图,改进地图下规划出的路径始终保持着距离障碍物的安全距离,并且对不同价值的道路进行了选择与规避,有效地保证了移动机器人在运动过程中的安全性,并且根据实际情况考虑了能耗代价改变了路径选择,实现了多路况复杂环境下的路径规划,验证了地图改进方法的可行性。
Abstract:
A complex map based on grid map was proposed for complex environments with multiple road conditions. The improved method improves the ordinary Boolean grid map from the mobile robot through security and consumability. Firstly, the decreasing cost function was established which is based on the distance between the robot and the obstacle; the cost function with the energy consumption ratio of different road conditions was also established.Then, the cost value of each grid was determined according to two cost functions;Finally, the two cost maps generated were merged to obtain an improved map . Taking the A* algorithm as an example, its evaluation function was modified to adapt to the new map, simulation experiments were conducted to compare the path planning situation under the traditional map and the improved map. The experimental results show that compared with the traditional grid map, the path under the improved map always maintains the safe distance from the obstacles, and the roads of different values were selected and evaded, which effectively guarantees the safety of the mobile robot during the movement process, and changes the path selection according to the actual situation, and realizes the path planning in the multi-path complex environment, which verifies the feasibility of the map improvement method.

参考文献/References:

[1]Georgiou C, Anderson S, Dodd T. Constructing informative Bayesian map priors: A multi-objective optimisation approach applied to in door occupancy grid mapping[J].The International Journal of Robotics Research, 2017, 36(1):1-18.

[2]Lin H Y, Yao C W, Cheng K S, et al.Topological map construction and scene recognition for vehicle localization[J]. Autonomous Robots, 201 8,42(1):65-81.

[3]Valencia R, Andrade-Cetto J , Porta J M.Path planning in belief space with Pose SLAM[C]//2011 IEEE International Conference on Robotics and Automation,2011:78-83.

[4]王金钗.变电站巡检机器人磁导航系统设计与实现[D].成都:西南交通大学,2015.

[5]庄莹, 黄丽娜, 郑恒杰,等.二维码定位技术支持下的室内导航电子地图的设计与实现:以武汉大学图书馆为例[J].测绘通报, 2017(5):125-128,142.

[6]丁林祥, 陶卫军.未知环境下室内移动机器人定位导航设计与实现[J].兵工自动化, 2018,37(3):12-17.

[7]孙建, 陈宗海, 王鹏,等.基于代价地图和最小树的移动机器人多区域覆盖方法[J].机器人,2015,37(4):435-442.

[8]Han X N , Leng Y Q , Luo H T , et al. A novel navigation scheme in dynamic environment using layered costmap[C]// Proceedings of the 29th Chinese Control and Decision Conference, 2017:7123-7128.

[9]Xin J, Jiao X L, Yang Y, et al. Visual navigation for mobile robot with Kinect camera in dynamic environment[C]//2016 35th Chinese Control Conference,2016:4757-4764.

[10]王维,裴东,冯璋.改进A*算法的移动机器人最短路径规划[J]. 计算机应用, 2018, 38(5):1523-1526.

[11]Fu B, Chen L, Zhou Y T , et al. An improved A* algorithm for the industrial robot path planning with high success rate and short length[J]. Robotics and Autonomous Systems, 2018, 106 :26-37.

[12]朱云虹,袁一.基于改进A*算法的最优路径搜索[J]. 计算机技术与发展,2018,28(4):55-59.

[13]徐保来,管贻生,苏泽荣,等.改进动态窗口法的阿克曼移动机器人局部路径规划器[J].机电工程技术, 2016, 45(9):21-26.

[14]王启宇,李刚俊.基于典型栅格地图的轮式移动机器人路径规划与跟踪[J].西南科技大学学报,2017,32(4):54-56,88.

[15]Cui R X , Li Y, Yan W S . Mutual information-based Multi-AUV path planning for scalar field sampling using multidimensional RRT* [J].IEEE Transactions on Systems Man and Cybernetics : Systems, 201 6, 46(7):993-1004.

相似文献/References:

[1]姜烽,申燚,张成,等.基于差分进化遗传优化的移动机器人轨迹跟踪控制[J].机械与电子,2016,(07):67.
 JIANG Feng,SHEN Yi,ZHANG Cheng,et al.[J].Machinery & Electronics,2016,(12):67.
[2]薛连杰,张彪,张霄远,等.移动机器人基于激光点云定位建图的汽车宽度与方位估计[J].机械与电子,2018,(06):76.
 XUE Lianjie,ZHANG Biao,ZHANG Xiaoyuan,et al.Width and Orientation Identification of Cars Based on Lidar Localization and Mapping[J].Machinery & Electronics,2018,(12):76.
[3]刘利波,张文明.基于智能蚁群算法的移动机器人轨迹规划[J].机械与电子,2017,(11):62.
 LIU Libo,ZHANG Wenming.Trajectory Planning of Mobile Robot Based on Intelligent Ant Colony Algorithm[J].Machinery & Electronics,2017,(12):62.
[4]李 涛,魏 强,付 龙,等.四旋翼两栖机器人姿态求解与控制[J].机械与电子,2015,(10):62.
 LI Tao,WEI Qiang,FU Long,et al.Attitude Solving and Control of an Amphibious Robot Based on Four-rotor[J].Machinery & Electronics,2015,(12):62.
[5]李明磊,赵 杰,李 戈.面向方形节点拓扑地图下的移动机器人路径规划算法研究[J].机械与电子,2015,(10):67.
 LI Minglei,ZHAO Jie,LI Ge.Research on Path Planning Algorithm for Mobile Robot Based on Square Nodes in Topological Map[J].Machinery & Electronics,2015,(12):67.
[6]王雄奇1,柯艳国2,吴贤斌3,等.基于虚拟墙的移动机器人路径跟踪与实时避障方法[J].机械与电子,2019,(11):76.
 ,i,et al.A Virtual Wall-Based Path Tracking and Obstacle Avoidance Method for Mobile Robot[J].Machinery & Electronics,2019,(12):76.
[7]李孟锡,何博侠,周 俣.基于A*和蚁群算法的移动机器人多目标路径规划方法[J].机械与电子,2021,(06):61.
 LI Mengxi,HE Boxia,ZHOU Yu.Multi-target Path Planning Method for Mobile Robot Based on A* and Ant Colony Algorithm[J].Machinery & Electronics,2021,(12):61.
[8]武 刚,许家元,邸 迪.基于快速进行平方算法的巡检机器人路径规划研究[J].机械与电子,2024,42(02):74.
 WU Gang,XU Jiayuan,DI Di.Research on Path Planning of Inspection Robot Based on Fast Marching Square Method Algorithm[J].Machinery & Electronics,2024,42(12):74.
[9]姜海猛,张志安,潘孝斌.基于 A * 与 DWA 算法的融合优化策略研究[J].机械与电子,2024,42(10):15.
 JIANG Haimeng,ZHANG Zhi an,PAN Xiaobin.Research on Fusion Optimization Strategy Based on A* and Dynamic Window Approach Algorithms[J].Machinery & Electronics,2024,42(12):15.

备注/Memo

备注/Memo:
收稿日期:2018-08-29
基金项目:辽宁省教育厅科研专项(LJZ2016018)
作者简介:赵 健(1995-)男,黑龙江绥化人,硕士研究生,研究方向为移动机器人,路径规划;张阳(1981-)男,辽宁沈阳人,副教授,研究方向为智能机电系统。
更新日期/Last Update: 2019-10-29