[1]齐爱玲1,李 琳1,朱亦轩2,等.基于融合特征的双通道CNN滚动轴承故障识别[J].机械与电子,2021,(05):15-19.
 QI Ailing,LI Lin,ZHU Yixuan,et al.Dual Channel CNN Bearing Fault Identification Based on Fusion Feature[J].Machinery & Electronics,2021,(05):15-19.
点击复制

基于融合特征的双通道CNN滚动轴承故障识别()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2021年05期
页码:
15-19
栏目:
设计与研究
出版日期:
2021-05-24

文章信息/Info

Title:
Dual Channel CNN Bearing Fault Identification Based on Fusion Feature
文章编号:
1001-2257(2021) 05-0015-05
作者:
齐爱玲李 琳朱亦轩张广明
1.西安科技大学计算机科学与技术学院,陕西 西安 710054;2.北京化工大学信息科学与技术学院,北京 102200;
3.西安科技大学机械工程学院,陕西 西安 710054
Author(s):
QI AilingLI LinZHU YixuanZHANG Guangming
(1.College of Computer Science and Technology,Xi’an University of Science and Technology,Xi’an 710054, China;
2.College of Information Science and Technology, BeijingUniversityofChemicalTechnology,Beijing 102200, China;
3.College of Mechanical Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
关键词:
故障诊断深度学习卷积神经网络时频图
Keywords:
fault diagnosisdeep learningCNNthe time frequency image
分类号:
TH133.33
文献标志码:
A
摘要:
针对传统的滚动轴承故障识别方法效果较差,对专家经验依赖较高的问题,提出一种基于融合特征的双通道CNN滚动轴承故障识别方法.该方法首先将原始信号采用小波分解方法生成时频图,再将时频图和原始故障信号融合输入到Lenet-5网络中,进一步对故障特征进行准确提取,在输出层对数据进行融合,使用Softmax分类器对轴承故障进行分类.实验结果表明,该方法对不同种类的滚动轴承故障的识别均能做出准确的判断,识别准确率高.
Abstract:
The traditional fault identification method has poor effect and relies more on expertexperience,so to solve this problem, a two-channel CNN rolling bearing fault identification method based on fusion features was proposed.In this method, the original signal was first generated by Morlet wavelet method, and then the time-frequency diagram and the original fault signal were fused and input into lenet-5 network,and the fault features were further accurately extracted.The data were fused at the output layer,and the faults were classified by Softmaxc lassifier.The experimental results show that this method can make accurate judgment on the identification of different kinds of rolling bearing faults with high accuracy.

参考文献/References:

[1] YANG B,LEI Y G,JIA F,et al.An intelligent fault di-agnosis approach based on transfer learning from labo-ratory bearings to locomotive bearings[J].Mechanical systems and signal processing,2019,122:692-706.

[2] 文成林,吕菲亚,包哲静,等.基于数据驱动的微小故障诊断方法综述[J].自动化学报,2016,42(9):1285-1299.
[3] GUO Y,WU X,NA J,et al.Incipient faults identification in gearbox by combining kurtogram and independent component analysis[J].Applied mechanics and materials,2015,764/765:309-313.
[4] QU J X,ZHANG Z S,GONG T.A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple? classifier fusion[J].Neurocomputing,2016,171:837-853.
[5] JINANE H,CLAUDE D,DEMBA D.Incipient fault detection and diagnosis based on Kullback–Leibler divergence using principal component analysis:Part II[J].Signal processing ,2015,109:334-344.
[6] 曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7):134-143.
[7] 宫文峰,陈辉,张泽辉,等.基于改进卷积神经网络的滚动轴承智能故障诊断研究[J].振动工程学报,2020,33(2):400-413.
[8] MURUGANATHAM B,SANJITH M A, KRISHNAKUMAR B,et al.Roller element bearing fault diagnosis using singular spectrum analysis[J].Mechanical systems and signal processing,2013,35(1/2):150-166.
[9] 李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
[10] HUANG N E,SHEN Z,LONGS R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the royal society A:mathematical,physicaland engineering sciences,1998,454(1971):903-995.
[11] JEGADEESHWARAN R,SUGUMARAN V.Fault diagnosis of automobile hydraulic brake systemusing statistical features and support vectormachines [J].Mechanical systems and signal processing,2015,52/53:436-446.
[12] YANG Y,YU D J,CHENG J S.A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J].Journal of sound and vibration,2005,294(1):269-277.
[13] ZHAO R,YAN R Q, CHEN Z H,et al.Deep learning and its applicationsto machinehealth monitoring[J].Mechanical systems and signal processing,2019(115):213-237.
[14] 唐波,陈慎慎.基于深度卷积神经网络的轴承故障诊断方法[J].电子测量与仪器学报,2020,34(3): 88-93.
[15] 陈志刚,杜小磊,张楠,等.基于改进EWT CS联合降噪和导联卷积网络的轴承故障诊断[J / OL].哈尔滨工程大学学报,2020:1-10[2020-07-29].http://kns.cnki.net/kcms/detail/23.1390.U.20200320.1408.012. html.
[16] 许理,李戈,余亮,等.基于小波包与CNN的滚动轴承故障诊断[J].四川理工学院学报(自然科学版),2018,31( 3):54-59.
[17] 袁建虎,韩涛,唐建,等.基于小波时频图和CNN的滚动轴承智能故障诊断方法[J].机械设计与研究,2017,33( 2):93-97.
[18] 刘刚,屈梁生.应用连续小波变换提取机械故障的特征[J].西安交通大学学报,2000,34( 11): 74-77.
[19] 林京.连续小波变换及其在滚动轴承故障诊断中的应用[J].西安交通大学学报,1999,33( 11):3-5.
[20] WANG Y,LIH W,CHENG L.A QoS-QoR aware CNN accelerator design approach[J].IEEE Transactions on computer-aided design of integrated
circuits and systems,2019,38( 11):1995-2007.
[21] CHAN T H,JIA K,GAO S H,et al.PCANet:A simple deep learning baseline for image classification[J].IEEE Transactions on imageprocessing, 2015,24( 12): 5017-5023.

相似文献/References:

[1]吕明珠1,2,苏晓明 1,等. 改进粒子群算法优化的支持向量机在滚动轴承故障诊断中的应用[J].机械与电子,2019,(01):42.
 ,,et al.Application of SVM Optimized by IPSO in Rolling Bearing Fault Diagnosis[J].Machinery & Electronics,2019,(05):42.
[2]汪 伟,李 军,翟旭升,等.某型航空发动机中介主轴承早期微弱故障诊断研究[J].机械与电子,2019,(06):6.
 ,,et al.Research on the Early Weak Fault Diagnosis of Aero-engine Intershaft Bearing[J].Machinery & Electronics,2019,(05):6.
[3]赵蕾,傅攀,胡龙飞,等.FOA-WPT降噪和PSO-SVM在滚动轴承故障诊断中的应用[J].机械与电子,2018,(12):3.
 ZHAO Lei,FU Pan,HU Longfei,et al.Applications of FOA-WPT and PSO-SVM in Faults Diagnosis of Rolling Bearing[J].Machinery & Electronics,2018,(05):3.
[4]吕明珠 苏晓明 陈长征 刘世勋.小波包能量熵与EMD结合分析法在风机滚动轴承故障诊断中的应用[J].机械与电子,2018,(06):8.
 LYU Mingzhu,SU Xingming,CHEN Changzheng,et al.Application of Wavelet Packet Energy Entropy and EMD Conjoint Analysis in Fault Diagnosis of Wind Turbine Bearing[J].Machinery & Electronics,2018,(05):8.
[5]王骁贤,张保华,陆思良.基于连续小波变换和卷积神经网络的无刷直流电机故障诊断[J].机械与电子,2018,(06):29.
 WANG Xiaoxian,ZHANG Baohua,LU Siliang.Fault Diagnosis of Brushless Direct Current Motor Based on Continuous Wavelet Transform and Convolutional Neural Network[J].Machinery & Electronics,2018,(05):29.
[6]刘志宇,黄亦翔.基于深度学习和迁移学习的液压泵健康评估方法[J].机械与电子,2018,(09):67.
 LIU Zhiyu,HUANG Yixiang.Health Assessment for Hydraulic Pump Based on Deep Learning and Transfer Learning[J].Machinery & Electronics,2018,(05):67.
[7]唐志宇,毛 兴,王路军.电力变压器绕组变形检测技术研究[J].机械与电子,2018,(11):53.
 TANG Zhiyu,MAO Xing,WANG Lujun.Research on Power Transformer Winding Deformation Detection Technology[J].Machinery & Electronics,2018,(05):53.
[8]杨伟力,于阳阳,罗达灿.基于小波包和PSO-Elman神经网络的滚动轴承故障诊断[J].机械与电子,2016,(05):13.
 YANG Weili,YU Yangyang,LUO Dacan.Rolling Bearing Fault Diagnosis Using Wavelet Packet Analysis and PSO-Elman Neural Network[J].Machinery & Electronics,2016,(05):13.
[9]袁小凯,李 果,蒋屹新,等.基于 HS- ELM 的油浸式变压器故障诊断[J].机械与电子,2019,(12):30.
 ,,et al.Fault Diagnosis of Oil Immersion Transformer Based on HS-ELM Algorithm[J].Machinery & Electronics,2019,(05):30.
[10]孟庆宇.基于 EEMD- SVM 的自动扶梯主驱动轴轴承故障诊断方法研究[J].机械与电子,2020,(05):51.
 Research on Fault Diagnosis Method for Main Drive Shaft Bearing of Escalator Based on EEMD-SVM [J].Machinery & Electronics,2020,(05):51.

备注/Memo

备注/Memo:
收稿日期:2020-08-10
基金项目:国家自然科学基金资助项目(61674121)?
作者简介:齐爱玲(1972-),女,陕西铜川人,博士,副教授,研究方向为人工智能、数据挖掘和图像处理等;李 琳(1996-),女,山东聊城人,硕士,研究方向为人工智能,通信作者.
更新日期/Last Update: 2021-05-26