[1] YANG B,LEI Y G,JIA F,et al.An intelligent fault di-agnosis approach based on transfer learning from labo-ratory bearings to locomotive bearings[J].Mechanical systems and signal processing,2019,122:692-706.[2] 文成林,吕菲亚,包哲静,等.基于数据驱动的微小故障诊断方法综述[J].自动化学报,2016,42(9):1285-1299.
[3] GUO Y,WU X,NA J,et al.Incipient faults identification in gearbox by combining kurtogram and independent component analysis[J].Applied mechanics and materials,2015,764/765:309-313.
[4] QU J X,ZHANG Z S,GONG T.A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple? classifier fusion[J].Neurocomputing,2016,171:837-853.
[5] JINANE H,CLAUDE D,DEMBA D.Incipient fault detection and diagnosis based on Kullback–Leibler divergence using principal component analysis:Part II[J].Signal processing ,2015,109:334-344.
[6] 曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报,2018,39(7):134-143.
[7] 宫文峰,陈辉,张泽辉,等.基于改进卷积神经网络的滚动轴承智能故障诊断研究[J].振动工程学报,2020,33(2):400-413.
[8] MURUGANATHAM B,SANJITH M A, KRISHNAKUMAR B,et al.Roller element bearing fault diagnosis using singular spectrum analysis[J].Mechanical systems and signal processing,2013,35(1/2):150-166.
[9] 李恒,张氢,秦仙蓉,等.基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J].振动与冲击,2018,37(19):124-131.
[10] HUANG N E,SHEN Z,LONGS R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the royal society A:mathematical,physicaland engineering sciences,1998,454(1971):903-995.
[11] JEGADEESHWARAN R,SUGUMARAN V.Fault diagnosis of automobile hydraulic brake systemusing statistical features and support vectormachines [J].Mechanical systems and signal processing,2015,52/53:436-446.
[12] YANG Y,YU D J,CHENG J S.A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J].Journal of sound and vibration,2005,294(1):269-277.
[13] ZHAO R,YAN R Q, CHEN Z H,et al.Deep learning and its applicationsto machinehealth monitoring[J].Mechanical systems and signal processing,2019(115):213-237.
[14] 唐波,陈慎慎.基于深度卷积神经网络的轴承故障诊断方法[J].电子测量与仪器学报,2020,34(3): 88-93.
[15] 陈志刚,杜小磊,张楠,等.基于改进EWT CS联合降噪和导联卷积网络的轴承故障诊断[J / OL].哈尔滨工程大学学报,2020:1-10[2020-07-29].http://kns.cnki.net/kcms/detail/23.1390.U.20200320.1408.012. html.
[16] 许理,李戈,余亮,等.基于小波包与CNN的滚动轴承故障诊断[J].四川理工学院学报(自然科学版),2018,31( 3):54-59.
[17] 袁建虎,韩涛,唐建,等.基于小波时频图和CNN的滚动轴承智能故障诊断方法[J].机械设计与研究,2017,33( 2):93-97.
[18] 刘刚,屈梁生.应用连续小波变换提取机械故障的特征[J].西安交通大学学报,2000,34( 11): 74-77.
[19] 林京.连续小波变换及其在滚动轴承故障诊断中的应用[J].西安交通大学学报,1999,33( 11):3-5.
[20] WANG Y,LIH W,CHENG L.A QoS-QoR aware CNN accelerator design approach[J].IEEE Transactions on computer-aided design of integrated
circuits and systems,2019,38( 11):1995-2007.
[21] CHAN T H,JIA K,GAO S H,et al.PCANet:A simple deep learning baseline for image classification[J].IEEE Transactions on imageprocessing, 2015,24( 12): 5017-5023.