[1]桑和成,宋栓军,唐铭伟,等.基于改进蚁群算法的机器人路径规划研究[J].机械与电子,2021,(02):17-20.
 Sang Hecheng,Song Shuanjun,Tang Mingwei,et al.Research on Robot Path Planning Based on Improved Ant Colony Algorithm[J].Machinery & Electronics,2021,(02):17-20.
点击复制

基于改进蚁群算法的机器人路径规划研究()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2021年02期
页码:
17-20
栏目:
设计与研究
出版日期:
2021-02-26

文章信息/Info

Title:
Research on Robot Path Planning Based on Improved Ant Colony Algorithm
文章编号:
1001-2257(2021)02-0017-04
作者:
桑和成宋栓军唐铭伟邢旭朋孟湲易
西安工程大学机电工程学院,陕西 西安 710048
Author(s):
Sang Hecheng Song Shuanjun Tang Mingwei Xing XupengMeng Yuanyi
School of Mechanical and Electrical Engineering, Xi’an Polytechnic University,Xi’an 710048,China
关键词:
路径规划信息素自适应变化启发函数A*算法
Keywords:
path planning pheromone adaptive change heuristic function A* algorithm
分类号:
TP242.6
文献标志码:
A
摘要:
针对基本蚁群算法在路径规划时出现收敛速度慢,易陷局部最优的问题,提出一种改进的蚁群算法。首先,为使算法在搜索时更具导向性引入方向夹角启发因子减少提高搜索速度;其次,融入A*算法的估价函数思想来改进启发函数,降低死锁可能性;最后,提出基于拉普拉斯概率分布的信息素挥发因子自适应策略,加快了算法收敛速度。多次仿真实验表明,所提出的改进算法能够快速,高效地寻找到最优路径,且路径质量优于基本蚁群算法规划出的路径。
Abstract:
This paper proposes an improved ant colony algorithm to solve the problem of slow convergence and easy to trapped in local optimality in the path planning of the basic ant colony algorithm. an improved ant colony algorithm is proposed. The algorithm is more oriented in search; secondly, it integrates the evaluation function idea of the A* algorithm to improve the heuristic function and reduce the possibility of deadlock; finally, a pheromone volatilization factor adaptive strategy based on the Laplace probability distribution is proposed to speed up The convergence speed of the algorithm is improved. A large number of simulation experiments show the improved algorithm can find a high-quality path quickly and effectively, and the path quality is better than that of the basic ant colony algorithm.

参考文献/References:

[1].涂亮杰,李林升,林国湘.基于改进蚁群算法的果园移动机器人路径规划研究[J].机床与液压,2019,47(23):69-73.
[2].朱艳,游晓明,刘升,等.基于改进蚁群算法的机器人路径规划问题研究[J].计算机工程与应用,2018,54(19):129-134.
[3].张晓玲,王正存,吴作君.基于改进蚁群算法的机器人路径规划[J].中国石油大学胜利学院学报,2018,32(2):44-47.
[4].万逸飞,彭力.改进A~*蚁群算法求解机器人路径规划问题[J].传感器与微系统,2019,38(12):153-156,160.
[5].曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学,2020,42(3):564-570.
[6].李任江,滕智鹏.基于改进蚁群算法的AGV路径规划[J].机械工程与自动化,2020(1):21-23.
[7].张苏英,赵国花,郭宝樑,于佳兴,刘慧贤.基于改进的蚁群算法的移动机器人路径规划[J].河北工业科技,2019,36(6):390-395.
[8].王苏彧,张铃炜,齐佳丽,等.自适应导向蚁群算法优化移动机器人路径规划[J].计算机应用研究,2020,37(增刊1):116-117,119.
[9].王强,姚进,王进戈.基于遗传算法的移动机器人的一种路径规划方法[J].哈尔滨工业大学学报,2004,36(7):867-870.
[10].赵静,汤云峰,蒋国平,等.基于改进蚁群算法的移动机器人路径规划[J].南京邮电大学学报(自然科学版),2019,39(6):73-78.
[11].马军,宋栓军,韩军政,等.融合蚁群-A~*算法的移动机器人路径规划[J].西安工程大学学报,2020,34(1):72-77.
[12].ZHU X G, HAN Q Y, WANG Z Q. The application of an improved ant colony algorithm in mobile robot path planning[J].Key engineering materials, 2011, 467 /468/469:222-225.
[13]. YU H, WANG S, BAO Y. Application of ant colony algorithms in path planning of ocean survey[J]. Journal of coastal research, 2019, 94: 121-124.

相似文献/References:

[1]王 嵘,万永菁.一种基于SLAM 的多功能探索机器人设计[J].机械与电子,2019,(09):51.
 .Design of Multifunctional Exploration Robot Based on SLAM[J].Machinery & Electronics,2019,(02):51.
[2]谢智慧,卢道华,王 佳,等.基于改进蚁群算法的机器人路径规划问题研究[J].机械与电子,2019,(06):70.
 ,,et al.Research on Robot Path Planning Problem Based on Improved Ant Colony Algorithm[J].Machinery & Electronics,2019,(02):70.
[3]赵健,张阳.基于典型栅格地图的代价地图改进方法[J].机械与电子,2018,(12):73.
 ZHAO Jian,ZHANG Yang.Cost Map Improvement Method Based on Typical Grid Map[J].Machinery & Electronics,2018,(02):73.
[4]操松元1,陈 江2,严 波1,等.无人机巡检输电线路的路径规划算法研究[J].机械与电子,2019,(05):40.
 ,,et al.Research on Path Planning Algorithms for Unmanned Aerial Vehicle Patrol Inspection Transmission Lines[J].Machinery & Electronics,2019,(02):40.
[5]文生平,张磊,刘其信.基于改进蚁群算法激光导航轮式机器人路径规划[J].机械与电子,2016,(05):73.
 WEN Shengping,ZHANG Lei,LIU Qixin.Path Planning for Laser Navigation Wheeled Robots Based on Improved Ant Colony Algorithm[J].Machinery & Electronics,2016,(02):73.
[6]周嵘,张志翔,翟晓晖,等.机器人室内路径规划算法的实用性研究[J].机械与电子,2016,(08):71.
 ZHOU Rong,ZHANG Zhixiang,ZHAI Xiaohui,et al.Practical Research on Robot Path Planning Algorithm[J].Machinery & Electronics,2016,(02):71.
[7]白金柯,吴晓娜.一种新型蚁群随机树的机器人路径规划算法[J].机械与电子,2015,(07):73.
 BAI Jinke,WU Xiaona.Robot-path Planning Based on Ant Colony Optimization and Rapidly-exploring Random Tree[J].Machinery & Electronics,2015,(02):73.
[8]李积云,许亚军,蒲卫华,等.基于势场法的路径规划算法特性分析和路径优化[J].机械与电子,2020,(05):18.
 ,,et al. Characteristics Analysis of Algorithm and Methods of Optimizing Path Based on Artificial Potential Field Method[J].Machinery & Electronics,2020,(02):18.
[9]张晓晔 1,2,3,等.基于时间栅格法和最优搜索的电网巡检机器人避障路径规划方法[J].机械与电子,2021,(09):71.
 ZHANG Xiaoye,,et al.Obstacle Avoidance Path Planning Method for Power Grid Inspection Robot Based on Time Grid Method and Optimal Search[J].Machinery & Electronics,2021,(02):71.
[10]杨东旭,李宏军,郝晓博,等.面向晶圆图的芯片定位方法[J].机械与电子,2021,(10):32.
 YANG Dongxu,LI Hongjun,HAO Xiaobo,et al.Chip Location Method for Wafer Map[J].Machinery & Electronics,2021,(02):32.

备注/Memo

备注/Memo:

收稿日期:2020-10-19

基金项目:国家自然基金青年项目(61701384);中国纺织工业联合会科技指导计划项目(2016090);西安工程大学博士科研启动基金(BS201834)

作者简介:桑和成(1993-),男,安徽明光人,硕士,研究方向机器人路径规划,控制;宋栓军(1974-),男,陕西宝鸡人,副教授,研究方向为供应链管理、生产管理优化等,通信作者。
更新日期/Last Update: 2021-02-26