[1]黄 莺 1,张少帅 2,黄 鹤 2,等.无人机遥感山区公路图像去噪方法[J].机械与电子,2021,(09):66-70.
 HUANG Ying,ZHANG Shaoshua,HUANG He,et al.A Denoising Method of Remote Sensing Mountainous Road Image by UAV[J].Machinery & Electronics,2021,(09):66-70.
点击复制

无人机遥感山区公路图像去噪方法()
分享到:

机械与电子[ISSN:1001-2257/CN:52-1052/TH]

卷:
期数:
2021年09期
页码:
66-70
栏目:
智能工程
出版日期:
2021-09-24

文章信息/Info

Title:
A Denoising Method of Remote Sensing Mountainous Road Image by UAV
文章编号:
1001-2257 ( 2021 ) 09-0066-05
作者:
黄 莺 张少帅 黄 鹤 王 珺 茹 锋
1. 空军工程大学,陕西 西安 710051 ; 2. 长安大学,陕西 西安 710064 ;3. 西安市智慧高速公路信息融合与控制重点实验室,陕西 西安 710064
Author(s):
HUANG Ying ZHANG Shaoshua HUANG HeWANG Jun RU Feng 3
(1.Air Force Engineering University , Xi ’an 710051 , China ; 2.Chang ’an University , Xi’an 710064 , China ;3.Xi ’ an Key Laboratory of Intelligent Expressway Information Fusion and Control , Xi ’ an 710064 , China )
关键词:
无人机信息融合滤波器计算机仿真遥感图像
Keywords:
UAV information fusion filter computer simulation remote sensing image
分类号:
TP391. 41
文献标志码:
A
摘要:
为实现对遥感图像较好的滤波去噪效果并有效保持图像边缘细节,提出一种自适应开关均中值融合滤波方法,可有效处理无人机拍摄的公路遥感图像.首先,选定遥感图像的局部区域,并设定梯度变换阈值大小,同时为标记该区域内的各个像素点,定义标志数组.然后,与阈值进行比较,若当前用于比较的像素点的值比梯度阈值大,则进行自适应开关均中值融合滤波,利用自适应选定阈值来替代传统开关均中值滤波器的固定阈值;若当前像素点小于梯度阈值,则选取改进梯度倒数进行加权平滑处理,即针对图像局部区域建立相关函数,将权值参数按照局部统计特性适应性进行调整.由实验结果可知,与传统梯度倒数加权平滑算法相比,自适应开关内中值融合滤波算法能够滤除遥感图像中的脉冲和椒盐噪声,对其他类型的噪声也有较好的效果,同时保留了图像的边缘细节信息.实验结果表明,滤波处理的图像平均梯度指数提高了 3.16% ,且参数均方误差( MSE )减少了约 5% ,具有较高的应用价值.
Abstract:
In order to achieve a better filtering and denoising effect on vertical images and effectively maintain image edge details , an adaptive switch-average median fusion filtering method is proposed , which can effectively process road imaging taken by drones.The threshold size of the gradual transformation is set , and a flag array for marking each segment point in the area is defined.Then , it is compared with the threshold. If the value of the currently used comparison variable point is greater than the gradient threshold , then adaptive switch average median fusion filtering is performed , and the adaptive correction threshold is used to replace the fixed threshold of the traditional switch average median filter ; If the current conversion point is less than the gradient? threshold , the improved gradient reciprocal is selected for gradual reduction.The experimental results show that the image is related to the traditional gradient reciprocal conversion slope algorithm.The algorithm in this paper can filter out the pulse and salt and pepper noise in the quantized image.Other experimental results show that the average gradient index of the filtered image is increased by 3.16% , and the parameter MSE is reduced by a bout 5% , which has higher application value.

参考文献/References:

[1] HUANG H , SONG J , GUO L , et al.Haze removal method based on a variation function and colour attenuation prior for UAV remote-sensing images [ J ] . Journal of modern optics , 2019 , 66 ( 12 ): 1282-1295.

[2] 黄鹤,刘一恒,赵熙,等 . 多层多源信息融合旋翼无人机测高算法[ J ] . 中国惯性技术学报,2018 , 26 ( 3 ): 316-322 , 329.
[3] 卢刚,闫敬文,寇业泉,等 . 由双树复数小波变换的父系数及邻域系数实现图像去噪[ J ] . 光学精密工程, 2009 ,17 ( 4 ): 916-922.
[4] 王新升,李葆华,郑靖 . 应用有限冲击响应滤波器消除星敏感器星像噪声[ J ] . 光学精密工程,2010 , 18 ( 6 ):1381-1386.
[5] 张继尧,张渫,刘晓,等 . 遥感图像自适应去噪方法研究[ J ] . 大气与环境光学学报, 2011 , 6 ( 5 ): 368-376.
[6] 刘建辉 . 光学遥感卫星影像高精度对地定位技术研究[ D ] . 郑州:解放军信息工程大学,2015.
[7] 丁海勇,郭瑞瑞,罗海滨 . 顾及纹理信息的遥 感图 像NSCT 域自适应阈值去噪[ J ] . 遥感技术与应用, 2017 ,32 ( 3 ): 435-442.
[8] 吴粉侠,李红,段群 . 基于信号分析的椒盐噪声滤波算法[ J ] . 咸阳师范学院学报, 2012 , 27 ( 6 ): 49-51 , 57.
[9] 魏丹,陈淑珍,陈彬,等 . 梯度倒数加权平滑算法的改进与实现[ J ] . 计算机应用研究, 2005 ( 3 ): 153-154 , 157.
[10] 柳树,于忠党 . 一种改进的开关中值滤波算法[ J ] . 微计算机应用,2009 , 30 ( 12 ): 1-6.
[11] 汪贵平,杜晶晶,宋京,等 . 基于梯度倒数的无人机遥感图像融合滤波方法[ J ] . 科学技术与工程, 2018 , 18( 31 ): 190-194.

相似文献/References:

[1]魏志强,葛 珊.无人机载光电吊舱双路视频压缩存储系统设计与实现[J].机械与电子,2019,(06):32.
 .Design and Realization of Dual-channel Video Compression Storage System for UAV Electro-optical Pod[J].Machinery & Electronics,2019,(09):32.
[2]陈斯昀1,蒋 刚2,留沧海2.六足机器人协同无人机大气数据分析系统[J].机械与电子,2019,(05):71.
 ,The Atmospheric Data Analysis System of Hexapod Robot Collaborated with the Unmanned Aerial Vehicle[J].Machinery & Electronics,2019,(09):71.
[3]冷献春,曾俊杰.某型无人机卫通设备的环境适应性设计[J].机械与电子,2019,(02):45.
 .Environmental Adaptability Design of a Certain Type of UAV Satcom Equipment[J].Machinery & Electronics,2019,(09):45.
[4]许 军,张军红,荣海春.小型无人机火箭助推发射动态响应研究[J].机械与电子,2018,(01):15.
 XU Jun,ZHANG Junhong,RONG Haichun.Research on Dynamic Response of Rocket Booster Launching for Small Unmanned Aerial Vehicle[J].Machinery & Electronics,2018,(09):15.
[5]李晓萌,王道波,郭继凯,等.基于某种生物启发式算法的无人机航迹规划[J].机械与电子,2018,(11):15.
 LI Xiaomeng,WANG Daobo,GUO Jikai,et al.Path Planning of UAV Based on a Biological Heuristic Algorithm[J].Machinery & Electronics,2018,(09):15.
[6]明瑞晨,李吉宽,李 刚,等.无人机纵向着舰下滑轨迹控制技术研究[J].机械与电子,2018,(08):44.
 MING Ruichen,LI Jikuan,LI Gang,et al.Research on Longitudinal Automatic Carrier Landing Control for Unmanned Aerial Vehicle[J].Machinery & Electronics,2018,(09):44.
[7]周 超,王志胜,孙俊珍.桥式吊车系统信息融合状态观测器设计[J].机械与电子,2015,(07):3.
 ZHOU Chao,WANG Zhisheng,SUN Junzhen.Information Fusion State Observer of Overhead Crane System[J].Machinery & Electronics,2015,(09):3.
[8]吴 斌,荣海春,王呈顺,等.某无人机载雷达挂架结构设计[J].机械与电子,2019,(12):26.
 ,,et al.Structure Design of the Bracket Used in an Unmanned Aerial Vehicle Carried Radar[J].Machinery & Electronics,2019,(09):26.
[9]许 哲,张少帅,郭 璐,等.无人机深度学习去雾算法[J].机械与电子,2021,(04):13.
 XU Zhe,ZHANG Shaoshuai,GUO Lu,et al. Deep Learning Defogging Algorithm for UAV[J].Machinery & Electronics,2021,(09):13.
[10]夏生吉,王道波,罗东海,等.无人机跟踪过程中的避障问题研究[J].机械与电子,2022,(11):61.
 XIA Shengji,WANG Daobo,LUO Donghai,et al.UAV Standoff Tracking Research Based on Lyapunov Vector Field[J].Machinery & Electronics,2022,(09):61.

备注/Memo

备注/Memo:
收稿日期: 2021-05-15
基金项目:陕西省自然科学基础研究计 划项目( 2021JM-184 );长 安大学中央高 校基本科研业务 费专项资金项 目( 300102329401 ,300102329501 );西安市智慧高速公路信息融合与控制重点实验室重点实验室(长安大学)开放基金资助项目( 300102321502 )
作者简介:黄 莺 ( 1976- ),女,陕西西安人,讲师,研究方向为无人机测控以及装备管理等.
更新日期/Last Update: 2021-10-08