[ 1 ] 李小新,陈华林 . 水下机器人科学考察技术应用[ J ] . 船舶工程,2021 , 43 ( 9 ): 8-13.[ 2 ] STANKIEWICZ P , TAN Y T , KOBILAROV M.Adaptive sampling with an autonomous underwater vehicle in static marine environments [ J ] .Journal of field robotics , 2021 , 38 ( 4 ): 572-597.
[ 3 ] BENOIST N M A , MORRIS K J , BETT B J , et al. Monitoring mosaic biotopes in a marine conservation zone by autonomous underwater vehicle [ J ] .Conserva- tion biology , 2019 , 33 ( 5 ):1174-1186.
[ 4 ] 杨文果,吴文启,张鹭,等 . 基于 INS /前视声纳组合的输水隧洞 AUV 巡检定位方法[ J ] . 导航定位与授时,2021 , 8 ( 5 ): 79-87.
[ 5 ] ROSTAMI S M H , SANGAIAH A K , WANG J , et al. Obstacle avoidance of mobile robots using modified artificial potential field algorithm [ J ] .EURASIP Journal on wireless communications and networking , 2019 , 2019 ( 1 ): 1-19.
[ 6 ] HU H Y , ZHANG C , SHENG Y H , ET A L.An improved artificial potential field model considering vehicle velocity for autonomous driving [ J ] .IFAC Papersonline , 2018 , 51 ( 31 ): 863-867.
[ 7 ] RATH A K , PARHI D R , DAS H C , et al.Analysis and use of fuzzy intelligent technique for navigation of humanoid robot in obstacle prone zone [ J ] .Defence technology , 2018 , 14 ( 6 ): 677-682.
[ 8 ] SINGH N H , THONGAM K.Mobile robot navigation using fuzzy logic in static environments [ J ] .Procedia computer science , 2018 , 125 : 11-17.
[ 9 ] 尹旷,王红斌,方健,等 . 基于强化学习的移动机器人路径规划优化[ J ] . 电子测量技术, 2021 , 44 ( 10 ): 91-95.
[ 10 ] LIN C C , WANG H J , YUAN J Y , et al.An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance [ J ] .Ocean engineering , 2019 , 189 :106327.
[ 11 ] BACK S , CHO G , OH J , et al.Autonomous UAV trail navigation with obstacle avoidance using deep neural networks [ J ] .Journal of intelligent and robotic systems , 2020 , 100 ( 3 ): 1195-1211.