[1]黄 钰,陆永华,官文超,等.基于机器视觉与力控的发动机弯管焊缝自动化打磨系统研究[J].机械与电子,2024,42(02):45-49.
 HUANG Yu,LU Yonghua,GUAN Wenchao,et al.Research on Automatic Grinding System for Longitudinal Weld of Engine Elbow Pipes Based on Machine Vision and Force Control[J].Machinery & Electronics,2024,42(02):45-49.
点击复制

基于机器视觉与力控的发动机弯管焊缝自动化打磨系统研究()
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
42
期数:
2024年02期
页码:
45-49
栏目:
智能制造
出版日期:
2024-02-27

文章信息/Info

Title:
Research on Automatic Grinding System for Longitudinal Weld of Engine Elbow Pipes Based on Machine Vision and Force Control
文章编号:
1001-2257 ( 2024 ) 02-0045-05
作者:
黄 钰 1 陆永华 1 官文超 1 刘京京 1 杨海波 2
1. 南京航空航天大学机电学院,江苏 南京 210016 ;
2. 南京工业职业技术大学机械工程学院,江苏 南京 210023
Author(s):
HUANG Yu1 LU Yonghua1 GUAN Wenchao1 LIU Jingjing1 YANG Haibo2
( 1.College of Mechanical and Electrical Engineering , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China ;
2.College of Mechanical Engineering , Nanjing Vocational University of Industry Technology , Nanjing 210023 , China )
关键词:
焊缝打磨机器视觉机械臂力控
Keywords:
weld grinding machine vision robotic arm force control
分类号:
TP23
文献标志码:
A
摘要:
某系列尺寸不一的弯管由 2 部分在中间对焊而成,目前多采用人工方式进行弯管内壁焊缝的打磨,存在打磨质量与标准不一、效率低和劳动强度大等问题。为此,设计并实现了一种基于机器视觉技术和力控的发动机弯管焊缝自动化打磨系统。利用工业相机模组正对弯管两侧端面并拍摄图像,经图像处理算法处理计算得到弯管两侧端面焊缝起始位置坐标。机械臂根据该坐标调整打磨轨迹并搭载浮动主轴,保持打磨力的恒定并对焊缝不规则区域进行补偿,实现基于位置控制和力控的打磨自适应调整。试验结果表明,系统整体打磨合格率为 96.03% ,相比人工打磨效率提升 95.90% 。系统可以在较少人工的参与和干预下完成弯管焊缝的自动化打磨,具有良好的稳定性和使用柔性,并且允许弯管存在一定的变形。
Abstract:
A series of pipes with different sizes are made of two parts welded in the middle.Nowadays , the inner wall welds of pipes are mostly ground manually , which has some problems such as different grinding quality and standard , low efficiency and high labor intensity.An automatic grinding system based on machine vision technology and force control is designed and implemented in this paper.The industrial camera modules are used to take images of both end faces of the pipes , and the coordinates of starting position of welds on both end faces are obtained by image processing algorithms.Then , the grinding trajectories of the robotic arm are adjusted according to the coordinates , which is equipped with a floating spindle to keep the grinding force constant and compensate the irregular area of the weld so as to realize the adaptive grinding adjustments based on position control and force control.The test results show that the overall grinding qualification rate of the system is 96.03% , and the grinding efficiency is improved by 95.90% compared with manual grinding.The system can finish the automatic grinding with less manual participation and intervention , has good stability and flexibility , and allows the pipes to have a certain deformation.

参考文献/References:

[ 1 ] 张香华,王立志,党伟 . 航空发动机管路设计研究[ J ] .中国新技术新产品,2018 ( 12 ): 80-81.

[ 2 ] 王博,徐鑫,王卫强 .30° 弯管应力集中处的冲蚀模拟分析[ J ] . 当代化工, 2020 , 49 ( 4 ): 680-683.
[ 3 ] 迟岑,张栓,孙越,等 . 航空发动机供油管裂纹失效分析[ J ] . 机械工程师, 2023( 5 ): 132-134.
[ 4 ] 张香华 . 航空发动机管路断裂分析及其结构优化设计[ D ] . 大连:大连理工大学,2016.
[ 5 ] GRACIA L , SOLANES J E , MU?OZ-BENAVENT P , et al.Adaptive sliding mode control for robotic surface treatment using force feedback [ J ] .Mechatronics , 2018 , 52 : 102-118.
[ 6 ] FENG H J , REN X K , LI L F , et al.A novel feature guided trajectory generation method based on point cloud for robotic grinding of freeform welds [ J ] .The international journal of advanced manufacturing technology , 2021 , 115 ( 5 / 6 ): 1763-1781.
[ 7 ] 杨程翔,丁勇,李登华 . 基于模板匹配的接缝宽度变化测量方法[ J / OL ] . 激光杂志: 1-7 [ 2023-06-29 ] .http : ∥kns.cnki.net / kcms / detail / 50.1085.TN.20230601.1538.004.html.
[ 8 ] 杨嘉能 . 基于直方图均衡的图像增强算法优化研究[ D ] . 乌鲁木齐:新疆大学,2021.
[ 9 ] 王玉灵 . 基于双边滤波的图像处理算法研究[ D ] . 西安:西安电子科技大学,2010.
[ 10 ] 侯琳,张海传 . 基于形态学算法的焊缝图像处理技术[ J ] . 大连工业大学学报, 2022 , 41 ( 2 ): 142-146.

相似文献/References:

[1]乔爽,吴金波.改进的Otsu算法在缺陷检测中的应用[J].机械与电子,2016,(07):71.
 QIAO Shuang,WU Jinbo,[J].Machinery & Electronics,2016,(02):71.
[2]李 勋1,张伟军1,徐智卿2,等.狭小空间内孔高测量机器人设计及视觉定位方法研究[J].机械与电子,2019,(12):60.
 ,,et al.Research on Design and Visual Positioning Method of Hole Height Measurement Robot in Narrow Space[J].Machinery & Electronics,2019,(02):60.
[3]吴广雨,张伟军,杨保佳.机器人视觉装配中的精确定位策略研究[J].机械与电子,2020,(03):75.
 ,Research on AccuratePositioningMethod in RobotVisualAssembly System[J].Machinery & Electronics,2020,(02):75.
[4]薛鹏程,苏 宁,齐 峰,等.基于机器视觉的总段对接方法[J].机械与电子,2021,(04):3.
 XUE Pengcheng,SU Ning,Qi Feng,et al.Block Erecting Method Based on Machine Vision[J].Machinery & Electronics,2021,(02):3.
[5]邵悦辰,贡 亮,沈晓晔,等.基于机器视觉的FDM-3D快速成型异常工况监控系统[J].机械与电子,2021,(04):28.
 SHAO Yuechen,GONG Liang,SHEN Xiaoye,et al.Abnormal Working Condition Monitoring System in FDM-3D Rapid Prototyping Based on Machine Vision[J].Machinery & Electronics,2021,(02):28.
[6]卞越洋,高晓科,张伟军.机器人带电作业中的视觉定位与优化策略[J].机械与电子,2021,(05):57.
 BIAN Yueyang,GAO Xiaoke,ZHANG Weijun.Vision Positioning and Optimization Strategyin Robot Live Work[J].Machinery & Electronics,2021,(02):57.
[7]王 丹,杨家琪,杨谢柳.基于改进 Census 变换的图像立体匹配算法研究[J].机械与电子,2021,(05):62.
 WANG Dan,YANG Jiaqi,YANG Xieliu.Research on Image Stereo Matching Algorithm Based on Improved Census Transform[J].Machinery & Electronics,2021,(02):62.
[8]于学均1,闵 诚1,李振龙1,等.机器视觉及激光轮廓扫描的电流互感器外观信息自动识别算法[J].机械与电子,2021,(07):75.
 YU Xuejun,MIN Cheng,LI Zhenlong,et al.Automatic Recognition Algorithm of Current Transformer Appearance Information Based on Machine Vision and Laser Contour Scan[J].Machinery & Electronics,2021,(02):75.
[9]魏 哲,王 盼.面向珍珠分拣机器人的形状视觉检测方法[J].机械与电子,2021,(08):68.
 WEI Zhe,WANG Pan.Visual Inspection Method of Pearl Shape for Sorting Robot[J].Machinery & Electronics,2021,(02):68.
[10]郭忠超,张周强,周 玲.棉花颜色视觉检测系统及影响因素分析研究[J].机械与电子,2022,(04):3.
 GUO Zhongchao,ZHANG Zhouqiang,ZHOU Ling.Study on Cotton Color Vision Detection System and its Influencing Factors[J].Machinery & Electronics,2022,(02):3.

备注/Memo

备注/Memo:
收稿日期: 2023-09-03
基金项目:国家自然科学基金资助项目( 51975293 );航空科学基金项目( 2019ZD052010 )作者简介:黄 钰 ( 1999- ),男,江西宜春人,硕士研究生,研究方向为计算机辅助测试与控制;陆永华 ( 1977- ),男,江苏南通人,博士,教授,博士研究生导师,研究方向为智能测量与控制、机器视觉、机器人技术等。
更新日期/Last Update: 2024-03-22