[ 1 ] WANG Y M , CAO G Q.A multiscale convolution neural network for bearing fault diagnosis based on frequency division denoising under complex noise conditions [ J ] .Complex and intelligent systems , 2023 , 9 :4263-4285.[ 2 ] 范明浩,何文超,凌同华,等 . 基于小波变换时能密度法的爆破振动信号分析[ J ] . 交通科学与工程,2022 , 38( 3 ): 79-85.
[ 3 ] 纪俊卿,张亚靓,孟祥川,等 . 自适应小波阈值滚动轴承故障振动信号降噪方法[ J ] . 哈尔滨理工大学学报,2021 , 26 ( 2 ): 124-130.
[ 4 ] SAROSSY M , CROWSTON J , KUMAR D , et al.Empirical mode decomposition denoising of the electroretinogram to enhance measurement of the photopic negative response [ J ] .Biomedical signal processing and control , 2022 , 71 : 103164.
[ 5 ] 王利,张伟,罗定南 . 基于随机奇异值分解的局部放电脉冲提取及去噪技术[ J ] . 中国电力, 2021 , 54 ( 10 ): 196-203.
[ 6 ] QUAN Y H , CHEN Y X , SHAO Y Z , et al.Image denoising using complex-valued deep CNN [ J ] .Pattern recognition , 2021 , 111 : 107639.
[ 7 ] 周末,宋玉蓉,宋波,等 . 融合自注意力机制的 D-BGRU 文本分类模型[ J ] . 微电子学与计算机, 2021 , 38( 12 ): 8-16.
[ 8 ] 汪友明,程琳 . 改进的 CNN-LSTM 轴承故障诊断方法[ J ] . 西安邮电大学学报, 2021 , 26 ( 1 ): 97-103.
[ 9 ] JAIN V , SRUNG H S.Natural image denoising with convolutional networks [ J ] .Advances in neural information processing systems , 2009 , 21 : 769-776.
[ 10 ] HAN H , WANG H , LIU Z L , et al.Intelligent vibration signal denoising method based on non-local fully convolutional neural network for rolling bearings [ J ] . ISA Transactions , 2022 , 122 : 13-23.
[ 11 ] 邢玉龙,王剑,赵会兵,等 . 基于全卷积神经网络的机车信号降噪[ J ] . 西南交通大学学报, 2021 , 56 ( 2 ): 444-450.
[ 12 ] BASHAB A , IBRAHIM A O , ABEDELGABAR E E , et al.A systematic mapping study on solving university timetabling problems using meta-heuristic algorithms [ J ] .Neural computing and applications , 2020 , 32 ( 23 ): 17397-17432.
[ 13 ] MIRJALILI S , LEWIS A.The whale optimization algorithm [ J ] .Advances in engineering software , 2016 , 95 : 51 67.
[ 14 ] ZHANG K , ZUO W , CHEN Y , et al.Beyond a gaussian denoiser : residual learning of deep cnn for image denoising [ J ] .IEEE Transactions on image processing , 2017 , 26 ( 7 ): 3142-3155.