[ 1 ] N?GELI T , CONTE C , DOMAHIDI A , et al.Environment-independent formation flight for micro aerial vehicles [ C ] ∥2014 IEEE / RSJ International Conference on Intelligent Robots and Systems.New York : IEEE , 2014 : 1141-1146.[ 2 ] SUBBOTIN M V , SMITH R S.Distributed estimator design for a formation with markovian communication topology [ C ] ∥2007 American Control Conference.New York : IEEE , 2007 : 5046-5051.
[ 3 ] SASKA M , VON?SEK V , CHUDOBA J , et al.Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles [ J ] .Journal of intelligent and robotic systems , 2016 , 84 : 469-492.
[ 4 ] NITSCHE M , KRAJNIK T , CIZEK P , et al.WhyCon : an efficient , marker-based localization system [ C ] ∥IROS Workshop on Open Source Aerial Robotics , 2015.
[ 5 ] 闵欢,卢虎,史浩东 . 采用深度神经网络的无人机蜂群视觉协同控制算法[ J ] . 西安交通大学学报,2020 , 54( 9 ): 173-179 , 196.
[ 6 ] 管任多 . 基于视觉跟踪的四旋翼无人机编队研究与实现[ D ] . 南昌:南昌大学,2021.
[ 7 ] JIANG P Y , ERGU D , LIU F Y , et al.A review of YOLO algorithm developments [ J ] .Procedia computer science , 2022 , 199 : 1066-1073.
[ 8 ] REDMON J , DIVVALA S , GIRSHICK R , et al.You only look once : unified , real-time object detection [ C ] ∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2016 : 779-788.
[ 9 ] REDMON J , FARHADI A.YOLO9000 : better , faster , stronger [ C ] ∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017 : 6517-6525.
[ 10 ] ZHU X K , LYU S C , WANG X , et al.TPH YOLOv5 : improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios [ C ] ∥Proceedings of the IEEE / CVF International Conference on Computer Vision , 2021 :2778-2788.
[ 11 ] WANG C Y , BOCHKOVSKIY A , LIAO H Y M. YOLOv7 : trainable bag-of-freebies sets new state of-the-art for real-time object detectors [ C ] ∥Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition , 2023 : 7464-7475.