[1]姜越夫,王 青,吕绪山.改进 YOLOv5s 的纱管目标检测方法[J].机械与电子,2024,42(02):29-34.
 JIANG Yuefu,WANG Qing,LYU Xushan.Improved YOLOv5s Method for Yarn Tube Object Detection[J].Machinery & Electronics,2024,42(02):29-34.
点击复制

改进 YOLOv5s 的纱管目标检测方法()
分享到:

《机械与电子》[ISSN:1001-2257/CN:52-1052/TH]

卷:
42
期数:
2024年02期
页码:
29-34
栏目:
自动控制与检测
出版日期:
2024-02-27

文章信息/Info

Title:
Improved YOLOv5s Method for Yarn Tube Object Detection
文章编号:
1001-2257 ( 2024 ) 02-0029-06
作者:
姜越夫王 青吕绪山
西安工程大学机电工程学院,陕西 西安 710699
Author(s):
JIANG Yuefu WANG Qing LYU Xushan
( School of Mechanical and Electrical Engineering , Xi ’an Polytechnic University , Xi ’an 710699 , China )
关键词:
深度学习纱管检测 WIoU
Keywords:
deep learning yarn tube detection WIoU
分类号:
P391.41
文献标志码:
A
摘要:
为解决传统纱管分类方法效率低下、误差较高的问题,提出一种基于改进 YOLOv5s 算法的纱管目标识别方法。该算法融合了坐标注意力模块( CA )和 Transformer 模块,提出了新的 SPP 模块( SPP+ )替换传统的 SPP 模块,使用加权双向特征金字塔网络( BiFPN )思想增强特征融合,并使用 WIoU 损失函数替代原有的损失函数。为验证改进算法性能,制作了一套纱管数据集,并基于改进 YOLOv5s 算法进行了纱管检测实验。实验结果表明改进的算法具有更好的识别效果。
Abstract:
To address the issues of low efficiency and high errors in traditional yarn tube classification methods , a yarn tube object recognition method based on an improved YOLOv5s algorithm is proposed. The enhanced YOLOv5s algorithm integrates a coordinate attention ( CA ) module and a Transformer module , introduces a new spatial pyramid pooling plus ( SPP+ ) module to replace the conventional spatial pyramid pooling ( SPP ) module , enhances feature fusion using the weighted bidirectional feature pyramid network ( BiFPN ) concept , and replaces the original loss function with the wise intersection over Union ( WIoU ) loss function.To validate the performance of the improved algorithm , a yarn tube dataset is created , and yarn tube detection experiments are conducted based on the improved YOLOv5s algorithm.The experimental results show that the improved algorithm exhibits superior recognition capabilities.

参考文献/References:

[ 1 ] 郭明瑞,高卫东 . 基于数控技术的棉纺环锭细纱机创新发展[ J ] . 棉纺织技术, 2023 , 51 ( 10 ): 75-80.

[ 2 ] 冯德虎 . 我国纺织工业区域协调发展的态势与方向[ J ] . 纺织导报, 2018 , 37 ( 11 ): 19-22.
[ 3 ] 董正 . 物联网与智能制造促进纺织工业智能化转型升级[ J ] . 中国纺织, 2018 , 68 ( 1 ): 126-127.
[ 4 ] 杨江利 . 纺纱厂生产线末端自动化包装解决方案的研究与设计[ D ] . 济南:山东大学,2016.
[ 5 ] 徐伟锋,胡俊武,祝新军,等 . 机器视觉在智能化纺纱生产中的应用现状[ J ] . 棉纺织技术, 2022 , 50 ( 5 ): 71-74.
[ 6 ] 侯长勇 . 细纱机的技术现状与发展趋势[ J ] . 棉纺织技术,2022 , 50 ( 3 ): 60-63.
[ 7 ] 任慧娟,金守峰,顾金芋 . 基于颜色特征的筒纱分拣机器人识别定位方法[ J ] . 轻工机械, 2020 , 38 ( 4 ): 58-63.
[ 8 ] 张帆,张团善,冀永乐,等 . 基于机器视觉的纺纱管颜色分拣算法研究[ J ] . 西安工程大学学报,2018 , 32 ( 5 ):560-566.
[ 9 ] 高畅,刘浩克,刘基宏 . 基于机器视觉的细纱管分类检测[ J ] . 丝绸, 2019 , 56 ( 1 ): 28-32.
[ 10 ] GIRSHICK R , DONAHUE J , DARRELL T , et a1. Rich feature hierarchies for accurate object detection and semantic segmentation [ C ] ∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2014 : 580-587.
[ 11 ] GIRSHICK R.Fast R-CNN [ C ] ∥Proceedings of the IEEE International Conference on Computer Vision , 2015 : 1440-1448.
[ 12 ] REN S Q , HE K M , GIRSHICK R , et a1.Faster R-CNN : towards real-time object detection with region proposal networks [ J ] .IEEE Transactions on pattern analysis and machine intelligence , 2015 , 39 ( 6 ), 1137-1149.
[ 13 ] HE K , GKIOXARI G , DOLL?R P , et a1.Mask R-CNN [ C ] ∥Proceedings of the IEEE International Conference on Computer Vision , 2017 : 2961-2969.
[ 14 ] REDMON J , DIVVALA S , GIRSHICK R , et al.You only look once : unified , real-time object detection [ C ] ∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2016 : 779-788.
[ 15 ] REDMON J , FARHADI A.YOLO9000 : better , faster , stronger [ C ] ∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ,2017 : 7263-7271.
[ 16 ] WANG C Y , BOCHKOVSKIY A , LIAO H Y M.YOLOv7 : Trainable bag-of-freebies sets new state-of-the art for real-time object detectors [ C ] ∥Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition , 2023 : 7464-7475.
[ 17 ] LIU W , ANGUELOV D , ERHAN D , et a1.SSD : Single shot multibox detector [ C ] ∥Computer Vision ECCV 2016 : 14th European Conference , 2016 : 21-37.
[ 18 ] LIN T Y , DOLL?R P , GIRSHICK R , et al.Feature pyramid networks for object detection [ C ] ∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , 2017 : 2117-2125.
[ 19 ] 徐健,吴曙培,刘秀平 . 基于改进深度神经网络的纱管分类[ J ] . 激光与光电子学进展, 2020 , 57 ( 10 ): 152-159.
[ 20 ] HOU Q B , ZHOU D Q , FENG J S.Coordinate attention for efficient mobile network design [ C ] ∥2021 IEEE / CVF Conference on Computer Vision and Pattern Recognition , 2021 : 13713-13722.
[ 21 ] TAN M X , PANG R M , LE Q V.Efficientdet : scalable and efficient object detection [ C ] ∥2021 IEEE / CVF Conference on Computer Vision and Pattern Recognition , 2020 : 10781-10790.
[ 22 ] ZHANG Y F , REN W Q , ZHANG Z , et al.Focal and efficient IOU loss for accurate bounding box regression [ J ] .Neurocomputing , 2022 , 506 : 146-157.

相似文献/References:

[1]王骁贤,张保华,陆思良.基于连续小波变换和卷积神经网络的无刷直流电机故障诊断[J].机械与电子,2018,(06):29.
 WANG Xiaoxian,ZHANG Baohua,LU Siliang.Fault Diagnosis of Brushless Direct Current Motor Based on Continuous Wavelet Transform and Convolutional Neural Network[J].Machinery & Electronics,2018,(02):29.
[2]刘志宇,黄亦翔.基于深度学习和迁移学习的液压泵健康评估方法[J].机械与电子,2018,(09):67.
 LIU Zhiyu,HUANG Yixiang.Health Assessment for Hydraulic Pump Based on Deep Learning and Transfer Learning[J].Machinery & Electronics,2018,(02):67.
[3]肖倩宏,康 鹏,杜 江,等.深度学习在电网智能调控系统中应用研究[J].机械与电子,2021,(01):38.
 XIAO Qianhong,KANG Peng,DU Jiang,et al.Research on the Application of Deep Learning Theory in Power Grid Intelligent Dispatching[J].Machinery & Electronics,2021,(02):38.
[4]许 哲,张少帅,郭 璐,等.无人机深度学习去雾算法[J].机械与电子,2021,(04):13.
 XU Zhe,ZHANG Shaoshuai,GUO Lu,et al. Deep Learning Defogging Algorithm for UAV[J].Machinery & Electronics,2021,(02):13.
[5]齐爱玲1,李 琳1,朱亦轩2,等.基于融合特征的双通道CNN滚动轴承故障识别[J].机械与电子,2021,(05):15.
 QI Ailing,LI Lin,ZHU Yixuan,et al.Dual Channel CNN Bearing Fault Identification Based on Fusion Feature[J].Machinery & Electronics,2021,(02):15.
[6]徐先峰,郑少杰,赵 依,等.基于数据分解与重构的光伏发电功率超短期预测[J].机械与电子,2022,(04):20.
 XU Xianfeng,ZHENG Shaojie,ZHAO Yi,et al.Ultra-short-term Prediction of Photovoltaic Power Generation Based on Data Decomposition and Deconstruction[J].Machinery & Electronics,2022,(02):20.
[7]江 励,熊达明,汤健华,等.自然光线环境中的空间物体快速识别和定位算法研究[J].机械与电子,2022,(06):8.
 JIANG Li,XIONG Daming,TANG Jianhua,et al.Recognition and Positioning Algorithm of Space Objects in Natural Light Environment[J].Machinery & Electronics,2022,(02):8.
[8]王西志,管声启,张理博,等.基于视觉引导的工业棒材上料系统研究[J].机械与电子,2023,41(05):19.
 WANG Xizhi,GUAN Shengqi,ZHANG Libo,et al.Research on Industrial Bar Feeding System Based on Visual Guidance[J].Machinery & Electronics,2023,41(02):19.
[9]王 青,吕绪山,党 帅,等.基于深度学习的纱管识别方法研究[J].机械与电子,2023,41(12):20.
 WANG Qing,LYU Xushan,DANG Shuai,et al.Research on Yarn Bobbin Detection Method Based on Deep Learning[J].Machinery & Electronics,2023,41(02):20.
[10]谭继勇,罗 俊,谢江涛,等.基于鲸鱼优化和批量规范化卷积神经网络的振动信号去噪[J].机械与电子,2024,42(04):3.
 TAN Jiyong,LUO Jun,XIE Jiangtao,et al.A Convolutional Neural Network with Whale Optimization and Batch Normalization for the Denoising of Vibration Signal[J].Machinery & Electronics,2024,42(02):3.

备注/Memo

备注/Memo:
收稿日期: 2023-08-31
基金项目:中国纺织工业联合会科技指导性项目( 2021019 )
作者简介:姜越夫 ( 1998- ),男,山西太原人,硕士,研究方向为计算机视觉;王 青 ( 1985- ),女,陕西西安人,讲师,硕士研究生导师,研究方向为三维视觉下的位姿估计。
更新日期/Last Update: 2024-03-22